暂时未有相关云产品技术能力~
公众号 Deephub-IMBA
TensorTrade 是一个基于强化学习的开源交易算法框架。它通过环境模拟、策略训练与奖励机制,让AI在历史数据中自主学习买卖时机,构建逻辑自洽的交易策略,助力量化研究。
2025年,AI告别“参数内卷”,迎来Test-Time Compute范式革命。模型不再依赖训练时的“烘焙”智能,而是通过推理阶段的思考、验证与优化,在数学、逻辑等任务中实现质的飞跃。DeepSeek-R1与OpenAI o3证明:让小模型“多想一会儿”,效果远超盲目堆参数。Best-of-N+验证机制让普通开发者也能复现高精度推理,算力成本可控。未来AI产品核心不再是模型大小,而是可配置的“Inference Budget”。
LMCache推出KV缓存持久化方案,显著优化大模型推理首Token延迟(TTFT)。通过将KV缓存存储至GPU、CPU或磁盘,实现跨请求复用,支持任意位置文本匹配,与vLLM深度集成,多轮对话、RAG场景提速3-10倍,降低硬件压力,提升吞吐。开源支持Linux/NVIDIA,正拓展AMD及更多生态支持。
JAX采用函数式编程,参数与模型分离,随机数需显式传递key,确保无隐藏状态。这使函数行为可预测,便于自动微分、编译优化与分布式训练,虽初学略显繁琐,但在科研、高精度仿真等场景下更具可控性与可复现优势。
本文揭示了Nano Banana的内部系统指令,展示其如何通过“描绘不等于认可”原则,将图像生成请求无条件传递给下游模型,禁止自身进行内容审查。该机制凸显“先生成、后过滤”的安全架构,引发对生成边界与伦理的深层思考。
RAG系统上线后常遇答案质量不稳,问题多出在检索细节。本文总结LlamaIndex中7个实测有效的优化技巧:语义分块+句子窗口、BM25与向量混合检索、多查询扩展、reranker精排、元数据过滤与去重、响应合成模式选择及持续评估。每招均附可运行代码,助你提升RAG效果。
Polars 高性能但易误用,新手常犯10大错误:如滥用 `read_csv`、过早 `collect`、误用 Python 循环等。正确做法是善用惰性计算、表达式向量化、列裁剪、流式聚合,避免频繁物化。掌握这些技巧才能释放其真正性能。
本文探讨基于Soft Actor-Critic(SAC)算法的下肢假肢自适应控制。传统方法依赖精确建模,难以应对复杂环境变化。SAC通过最大熵强化学习,使假肢在仿真中自主探索、学习稳定步态,具备抗干扰与容错能力。结合生物工程视角,将神经网络映射为神经系统,奖励函数关联代谢效率,实现从试错到自然行走的演化。相位图分析显示极限环形成,标志动态稳定步态建立,能效曲线表明后期动作更节能。研究为智能假肢迈向临床应用提供新思路。
自我进化智能体突破传统AI静态局限,通过“执行-反馈-调整”闭环,实现持续自主优化。它结合大模型与在线学习,利用多评分器反馈自动改进提示或参数,无需人工干预。适用于医疗、金融、编程等动态场景,推动AI迈向终身学习。
微软GraphRAG是早期成熟的图增强检索系统,融合实体、关系与层级社区摘要,支持宏观主题问答。本文重点介绍其DRIFT搜索策略:通过HyDE生成假设答案,结合向量检索与知识图谱动态遍历,先全局后局部,多轮迭代挖掘细粒度信息,平衡效率与质量,显著提升复杂查询的响应能力。
AI Agent并非玄学,核心仅为“循环 + 大模型 + 工具函数”。本文教你用Gemini 3从零搭建能读写文件、执行指令的命令行助手,拆解其“观察-思考-行动”循环机制,揭示智能体背后的简洁本质。
本文深入解析提示注入——OWASP LLM Top 10头号风险,揭示其与传统注入的本质区别及为何无法靠过滤器根治。涵盖直接与间接攻击手法、真实案例,并提出五层纵深防御策略,助你构建弹性AI系统,有效管控风险。
Pixeltable 是一个开源多模态 AI 基础设施框架,统一管理文档、图像、视频、embedding 和 LLM 输出,通过“一切皆表”理念,将数据存储、计算与 pipeline 自动化集成于一体,简化 RAG、目标检测、相似性检索等应用开发,告别拼凑式架构,提升开发效率与可维护性。
JAX是Google与NVIDIA联合开发的高性能数值计算库,依托XLA实现CPU/GPU/TPU加速,支持自动微分、JIT编译、向量化与并行化。生态丰富,含Flax、Optax等工具,适合深度学习与科学计算。
检索增强生成(RAG)已超越简单向量匹配,迈向LongRAG、Self-RAG与GraphRAG等高级形态。LongRAG通过大块重叠分片保留长上下文,提升连贯性;Self-RAG引入反思机制,动态判断检索必要性与内容相关性,增强可信度;GraphRAG构建知识图谱,支持多跳推理与复杂关系挖掘。三者分别应对上下文断裂、检索盲目性与关系表达缺失难题,代表2025年RAG工程化核心进展,可依场景组合使用以平衡准确性、成本与复杂度。
CrewAI 是一个基于 Python 的自主 AI 智能体编排框架,可构建“虚拟团队”协同完成复杂任务。通过定义角色明确的 Agents、任务流 Tasks、协作流程 Processes 及可用工具 Tools,实现研究、写作、开发等多环节自动化。适用于长链条工作流,如研报生成、竞品分析、软件开发等,支持异步执行、人工介入与结构化输出,集成主流大模型与工具生态,是处理复杂知识型任务的高效选择。(238 字)
深度学习模型规模激增,如Llama 3.1达4050亿参数,单卡训练需数百年。并行计算通过多GPU协同解决此问题。本文详解PyTorch的分布式数据并行(DDP),涵盖原理、通信机制与代码实战,助你高效实现多卡训练。
LEANN是面向RAG的轻量级嵌入式向量数据库,如SQLite般无需服务依赖,可在本地运行。它通过图结构与选择性重计算,节省97%存储且不损精度,让笔记本也能高效检索百万文档,兼顾隐私与性能,堪称个人AI搜索引擎。
本文介绍Pandas中groupby的10个实用技巧,突破传统聚合认知。涵盖多函数聚合、结果命名、transform特征构造、组内累积计算、自定义逻辑、唯一值统计、分类分组、多级索引、扁平化输出及透视表结合应用,助你高效处理复杂数据场景,提升数据分析效率。(238字)
TOON(Token-Oriented Object Notation)是一种专为降低LLM输入token消耗设计的数据格式。它通过省略JSON中冗余的括号、引号和重复键名,用类似CSV与YAML结合的方式表达结构化数据,显著减少token数量,适合向模型高效传参,但不替代JSON用于存储或复杂嵌套场景。
Python 3.14 带来10项实用改进:类型系统增强、错误提示更清晰、导入优化、异步任务取消更稳定,并新增 `chdir()` 上下文管理器等。虽改动细微,却显著提升代码可读性、调试效率与运行稳定性,适合自动化脚本与日常开发。升级即享,无需额外成本。
模型85%准确率不够看?超参数优化能释放真正潜力!本文详解Grid Search与Random Search的原理、优劣及实战对比,揭示如何通过“粗搜+精调”混合策略高效提升模型性能,从“还行”到“能打”。
QF-Lib 是一个一体化的量化金融研究工具库,涵盖数据获取、策略回测、风险分析到报告生成全流程。支持多数据源接入与前瞻偏差防护,基于事件驱动架构,内置专业金融函数,模块化设计便于扩展,可快速搭建策略原型并自动生成PDF/Excel报告,提升量化研究效率。
AI记忆幻觉频发:刚升职就被遗忘,喜欢的书被记错。问题根源在于记忆系统“捏造、错误、冲突、遗漏”。新研究HaluMem首次实现操作级评估,揭示当前AI记忆提取与更新全面失效,为构建可信AI指明方向。
2025年Agentic AI迅猛发展,但全自主智能体风险难控。Agent-Assist(人机协同)模式兼顾效率与安全,通过人类反馈持续学习,结合RAG构建组织知识库,实现AI越用越聪明。适合高风险、强依赖上下文的场景,是企业智能化升级的更优路径。
本文介绍如何使用 LangGraph 构建一个具备实用性的RAG系统,突破传统“检索-生成”模式的局限。系统支持对话上下文理解、问题重写、相关性过滤、查询优化与智能路由,能处理追问、拒答无关问题,并在无结果时自动迭代,结合记忆机制实现更智能的问答体验。
LightRAG 是一款开源、模块化的检索增强生成(RAG)框架,支持快速构建基于知识图谱与向量检索的混合搜索系统。它兼容多种LLM与嵌入模型,如Ollama、Gemini等,提供灵活配置和本地部署能力,助力高效、准确的问答系统开发。
模型性能优化关键在于细节:固定输入形状、预热、I/O绑定、精度量化、图优化与CUDA Graph等小技巧,无需重构代码即可显著降低延迟。结合ONNX Runtime与TensorRT最佳实践,每个环节节省几毫秒,累积提升用户体验。生产环境实测有效,低延迟从此有据可依。
Orion-MSP提出多尺度稀疏注意力机制,攻克表格数据建模难题。通过多粒度特征交互、块稀疏注意力降复杂度、Perceiver内存实现双向信息流,在宽表与层次化数据中显著超越XGBoost及现有Transformer模型,推动表格数据深度学习新进展。(239字)
本文对比了Python中六大常用因果推断库:Bnlearn、Pgmpy、CausalNex、DoWhy、PyAgrum和CausalImpact,涵盖贝叶斯网络建模、因果结构学习与效应评估。基于Census Income数据集,分析各库在因果发现、可解释性与工程实践中的优劣,助你根据项目需求选择合适工具。
回归任务中,模型常只输出预测值而忽略不确定性,带来潜在风险。本文对比四种神经网络不确定性估计方法:均值+对数标准差、均值+对数方差、MC Dropout与简化PPO。实验表明,前两者在混凝土强度数据上表现最佳,能有效识别可靠预测,而PPO效果不佳。准确评估不确定性对医疗、自动驾驶等高风险领域至关重要。
3D高斯溅射(3DGS)正成为3D视觉新标准,广泛应用于AR/VR与实时渲染。本文用PyTorch在几百行代码内实现其核心渲染流程,涵盖投影、排序、分块与合成分步,效果媲美SOTA,助力快速理解与落地。
MCP协议为大语言模型连接外部工具与数据提供标准化方案,FastMCP是其Python最佳实践框架。本文详解MCP核心概念,演示如何用FastMCP快速搭建支持工具调用、资源访问与身份认证的MCP服务器,并集成至LLM应用,实现AI智能体与真实世界的高效交互。
LangChain v1.0 引入中间件机制,系统化解决上下文管理难题。通过模块化中间件,实现输入预处理、敏感信息过滤、工具权限控制等,提升Agent在生产环境的稳定性与可维护性。
文本到图像模型飞速发展,但如何精准对齐人类偏好仍是难题。清华与快手提出Chunk-GRPO,通过“分块优化”替代逐步行更新,结合时间动态划分生成阶段,有效缓解优势归因错误,提升图像质量与训练稳定性,推动AI更懂审美与构图。
本文通过构建一个极简CLI编码代理,探索LangGraph与MCP服务器的底层机制。摒弃商业代理的复杂封装,验证“裸机”LLM代理在无限循环中调用工具的可行性。集成文件操作、网络搜索、GitHub交互等MCP工具,结合Pytest自动化测试与SQLite状态持久化,实现可观察、可调试的智能编码工作流,揭示模型上下文协议的核心价值与实践挑战。
特征越多模型未必越好,过多特征易导致过拟合、训练慢、难解释。递归特征消除(RFE)通过反复训练与特征评分,逐步剔除不重要特征,提升模型泛化能力与效率。本文详解RFE原理,并用scikit-learn实战葡萄酒数据集,展示如何结合逻辑回归与随机森林进行特征选择,比较不同模型的筛选差异,并通过RFECV自动确定最优特征数量,辅以可视化分析,帮助构建更简洁、高效、可解释的模型。
AutoSampler 是 OptunaHub 热门智能采样器,下载量超 3 万/周。新版支持多目标与约束优化,自动选择 TPE、GPSampler、NSGA-II/III 等算法。基于搜索空间、目标数等特征动态切换,性能优于默认采样器。适配 Optuna v4.6,安装便捷,助力高效自动化调参。
本文介绍如何为AI Agent构建记忆系统,通过SQLite存储交互历史、向量数据库实现语义检索,结合LLM反思与总结,赋予Agent跨会话记忆、自我反思和目标追踪能力,使其从被动应答工具进化为可长期协作的智能伙伴。
Pandas可空数据类型(如Int64、boolean、string)解决NaN导致的类型退化与逻辑混乱问题,统一用pd.NA表示缺失,支持三值逻辑,提升数据清洗可靠性与代码可读性。
近期LLM强化学习进展迅速,CE-GPPO、EPO与AsyPPO三篇论文从梯度恢复、时序平滑与非对称critic集成等角度,分别解决熵控难题,共同推动大规模推理模型训练方法革新。
数据投毒通过在训练数据中植入恶意样本,将后门永久嵌入大模型,仅需数百份毒样本即可触发数据泄露、越狱等行为,防御需结合溯源、聚类分析与自动化检测。
本文深入解析vLLM高性能部署实践,揭秘如何通过continuous batching、PagedAttention与前缀缓存提升吞吐;详解批处理、量化、并发参数调优,助力实现高TPS与低延迟平衡,真正发挥vLLM生产级潜力。
HNSW是一种高效向量检索算法,通过分层图结构实现近似最近邻的对数时间搜索,显著降低查询延迟。相比暴力搜索,它在保持高召回率的同时,将性能提升数十倍,广泛应用于大规模RAG系统。
AutoGen是微软开源的多智能体AI框架,支持多个AI智能体与人类协作,通过对话完成复杂任务。各智能体具备不同角色与能力,可调用工具、执行代码,并在群聊中辩论、推理、纠错,实现无需人工干预的自动化协作,适用于复杂问题求解与团队化AI应用开发。
BERT通过掩码语言建模(MLM)实现双向语言理解,随机遮蔽15%的词并预测,结合Transformer的自注意力与多头机制,利用上下文信息生成深层语义表示。其数学设计如√d_k缩放、80-10-10掩码策略和交叉熵优化,显著提升模型性能,奠定现代NLP基础。
本文介绍基于LangGraph构建的双层记忆系统,通过短期与长期记忆协同,实现AI代理的持续学习。短期记忆管理会话内上下文,长期记忆跨会话存储用户偏好与决策,结合人机协作反馈循环,动态更新提示词,使代理具备个性化响应与行为进化能力。
本文介绍两种生成合成数据的实用方法:基于随机森林的逐列生成和高斯混合模型(GMM),旨在保持数据分布与列间关系的真实性,兼顾隐私与多样性,适用于测试、训练及敏感数据替代场景。
嵌入是RAG系统的核心,将文本转化为语义向量,实现基于含义的检索。本文详解嵌入原理、关键参数及主流开源模型,助你根据分块大小、语言需求和性能约束,选择最合适的嵌入方案,提升RAG效果。
REFRAG提出用轻量编码器将检索文本块压缩为单向量,再投影至LLM嵌入空间,结合强化学习策略选择性展开关键块。相比传统RAG,输入序列大幅缩短,首token速度提升达30倍,准确率几乎无损,显著降低计算开销。
发表了文章
2025-12-22
发表了文章
2025-12-21
发表了文章
2025-12-20
发表了文章
2025-12-19
发表了文章
2025-12-19
发表了文章
2025-12-17
发表了文章
2025-12-16
发表了文章
2025-12-15
发表了文章
2025-12-14
发表了文章
2025-12-13
发表了文章
2025-12-12
发表了文章
2025-12-11
发表了文章
2025-12-10
发表了文章
2025-12-09
发表了文章
2025-12-08
发表了文章
2025-12-07
发表了文章
2025-12-07
发表了文章
2025-12-05
发表了文章
2025-12-04
发表了文章
2025-12-03