文生图(Text-to-Image Generation)是AIGC的重要方向,近年来模型效果显著提升,受到投资界与研究界高度关注。本文从评测体系、可控生成、个性化模型及高质量数据集四个角度探讨该领域面临的关键问题与研究进展。尽管生成模型如Diffusion Model和Stable Diffusion在效果与效率上突破显著,但在文本理解、生成控制、模型定制及数据质量等方面仍存在挑战。如何建立统一的评价标准、提升生成与文本的一致性、实现个性化定制及构建高质量多语言数据集,是未来研究与应用的关键方向。文生图的发展有望推动人机交互方式变革,成为人工智能迈向“人性化”的重要一步。