程序猿一枚,把梦想揣进口袋的挨踢工作者。主要工作是分布式数据分析(DataFrame并行化框架),以及大规模分布式多维数组计算框架等。
本文首先对Mars的概念、功能、优势进行了介绍,随后,对Mars几个典型的应用场景进行介绍,并通过两个Demo展示了在使用Mars后数据科学性能的提升,最后总结了Mars的最佳实践,让使用Mars更高效便捷。
本文从数据科学概念、背景和现状切入,引出加速数据科学的新方式Mars,并介绍了Mars具体能解决的一些问题和背后的逻辑、哲学,同时对Mars整体数据处理流程进行了介绍。
Mars 是一个并行和分布式 Python 框架,能轻松把单机大家耳熟能详的的 numpy、pandas、scikit-learn 等库,以及 Python 函数利用多核或者多机加速。这其中,并行和分布式 Python 函数主要利用 Mars Remote API。
Mars 能利用并行和分布式技术,加速 Python 数据科学栈,包括 numpy、pandas 和 scikit-learn。同时,也能轻松与 TensorFlow、PyTorch 和 XGBoost 集成。
最早的 "DataFrame" ,来源于贝尔实验室开发的 S 语言。R 语言,作为 S 语言的开源版本,于 2000 年发布了第一个稳定版本,并且实现了 dataframe。pandas 于 2009 年被开发,Python 中于是也有了 DataFrame 的概念。
在数据科学世界,Python 是一个不可忽视的存在,且有愈演愈烈之势。而其中主要的使用工具,包括 Numpy、Pandas 和 Scikit-learn 等。 Mars 在 MaxCompute 团队内部诞生,它的主要目标就是让 Numpy、pandas 和 scikit-learn 等数据科学的库能够并行和分布式执行,支持通过 RAPIDS 平台用 GPU 加速数据科学。
本月,Mars 发布了 0.4.0b1 ,0.4.0b2 和 0.3.2 以及 0.3.3,点击链接查看详细的 Release Notes。本月两次发布版本是特殊情况,0.4.0b2 修复了 0.4.0b1 中比较紧急的问题。
相信大家对排序算法都非常熟悉了,快速排序、堆排序、归并排序等等。如果我们想在一个很大的数据集上进行排序,能利用上多核,甚至是分布式集群,有什么办法么? 本文就介绍一种并行排序算法:并行正则采样排序算法(Parallel Sorting by Regular Sampling),简称 PSRS 算法。
在数据科学世界,Python 是一个不可忽视的存在,且有愈演愈烈之势。而其中主要的使用工具,包括 Numpy、Pandas 和 Scikit-learn 等。 Mars 在 MaxCompute 团队内部诞生,它的主要目标就是让 Numpy、pandas 和 scikit-learn 等数据科学的库能够并行和分布式执行,支持通过 RAPIDS 平台用 GPU 加速数据科学。
PyODPS 提供了 DataFrame API 来用类似 pandas 的接口进行大规模数据分析以及预处理,本文主要介绍如何使用 PyODPS 执行笛卡尔积的操作。 笛卡尔积最常出现的场景是两两之间需要比较或者运算。
在使用 PyODPS DataFrame 编写数据应用时,尽管编写的是同一个脚本文件,但其中的代码会在不同位置执行,这可能导致一些无法预期的问题,本文介绍当出现相关问题时,如何确定代码在何处执行,以及提供部分场景下解决问题的方法。
之前我们介绍过在 PyODPS DataFrame 中使用三方包。对于二进制包而言,MaxCompute 要求使用包名包含 cp27-cp27m 的 Wheel 包。但对于部分长时间未更新的包,例如 oss2 依赖的 crcmod,PyPI 并未提供 Wheel 包,因而需要自行打包。
Mars 是一个基于矩阵的统一分布式计算框架,在之前的文章中已经介绍了 Mars 是什么, 以及 Mars 分布式执行 ,而且 Mars 已经在 GitHub 中开源。当你看完 Mars 的介绍可能会问它能做什么,这几乎取决于你想做什么,因为 Mars 作为底层运算库,实现了 numpy 70% 的常用接口。
先前,我们已经介绍过 Mars 是什么。如今 Mars 已在 Github 开源并对内上线试用,本文将介绍 Mars 已实现的分布式执行架构,欢迎大家提出意见。 架构 Mars 提供了一套分布式执行 Tensor 的库。
最近,在 PyCon China 2018 的北京主会场、成都和杭州分会场都分享了我们最新的工作 Mars,基于矩阵的统一计算框架。本文会以文字的形式对 PyCon 中国上的分享再进行一次阐述。 听到 Mars,很多第一次听说的同学都会灵魂三问:Mars 是什么,能做什么,怎么做的。
很高兴在这里宣布我们的新项目:Mars,一个基于张量的统一分布式计算框架。我们已经在 Github 开源:https://github.com/mars-project/mars 。 背景 Python Python 是一门相当古老的语言了,如今,在数据科学计算、机器学习、以及深度学习领域,Python 越来越受欢迎。
背景 [PyODPS DataFrame]http://pyodps.readthedocs.io/zh_CN/latest/) 提供了类似 pandas 的接口,来操作 ODPS 数据,同时也支持在本地使用 pandas,和使用数据库来执行。
新版 MaxCompute Isolation Session 支持 Python UDF。也就是说,Python UDF 中已经可以跑二进制包。刚才以 Scipy 为例踩了一下坑,把相关的过程分享出来。
PyODPS 中使用 Python UDF 包含两方面,一个是直接使用,也就是在 MaxCompute SQL 中使用;一个是间接的方式,也就是 PyODPS DataFrame,这种方式你不需要直接写 Python UDF,而是写普通的 Python 函数或者类。
PyODPS支持用 Python 来对 MaxCompute 对象进行操作,它提供了 DataFrame API 来用类似 pandas 的接口进行大规模数据分析以及预处理,并且可以用 ml 模块来执行机器学习算法。
前几天,PyODPS发布了0.7版本,这篇文章给大家介绍下PyODPS新版本带来的重要特性。 之前也有若干篇文章介绍过了,我们PyODPS DataFrame是延迟执行的,在调用立即执行的方法,比如execute、persist等之前,都只是构建了表达式。
这篇文章解释了PyODPS DataFrame是什么,能做什么事情,以及简单介绍一下实现的原理。
PyODPS,拥有对于Python用户传统的数据分析和机器学习愉快的体验,包括了DataFrame框架和机器学习模块,它们类似于pandas+scikit-learn,能用它们进行数据分析、绘图、机器学习等等。
PyOdps 0.4版本,DataFrame API支持使用pandas进行本地计算,用户因此能join ODPS和本地数据,也能进行本地debug,另外还有MapReduce API等新特性
PyOdps正式发布DataFrame框架(此处应掌声经久不息),DTer的福音!有了它,就像卷福有了花生,比翼双飞,哦不,如虎添翼。 快过年了,大家一定没心情看长篇大论的分析文章。作为介绍PyOdps DataFrame的开篇文章,我只说说其用起来爽的地方。其余的部分,从使用、问题到实现原理,我