暂无个人介绍
能力说明:
掌握计算机基础知识,初步了解Linux系统特性、安装步骤以及基本命令和操作;具备计算机基础网络知识与数据通信基础知识。
阿里云技能认证
详细说明
本文描述在阿里云上从0开始构建一个LLM智能问答钉钉机器人。LLM直接调用了阿里云百炼平台提供的调用服务。
MCP火爆异常,目前大量资料介绍了基本概念,与LLM联动这块通常是讲如何集成在Claude、Cursor这些系统,隐藏了其底层细节原理。本文将从0编写client、Server代码、搭建QwQ-32B大模型、接入云数据库,讲解通过联动外围工具来解决LLM“知识茧房”问题。最后总结并展望了MCP未来的发展。
发现个好玩的模型,阿里最近开源的,可以便捷的复刻人声,本文提供全套安装过程。仓库地址:https://github.com/FunAudioLLM/CosyVoice。
本文描述在阿里云上从0开始构建个人的文生图应用。网页采用streamlit实现,文生图模型使用了阿里云Lindorm AI数据服务平台上部署Stable Diffusion来实现。 Streamlit使用起来非常简便,可以让开发者快速(短则几十分钟即可)搭建一个具备公网访问能力的网页。尤其在人工智能开发上,可使用Streamlit快速搭建应用环境,让开发人员将更多精力集中在人工智能本身,本文从0开始详细讲解整个应用的构建过程,代码实现了一个简洁的具备公网访问能力的网页版文生图应用。
本文描述在阿里云上从0开始构建个人/企业专属,具备私域知识库+LLM智能问答能力的网页版聊天机器人。网页采用streamlit实现,知识库技术方案使用了Lindorm AI数据服务平台知识库能力,LLM使用了开源ChatGLM2-6B。 Streamlit使用起来非常简便,可以让开发者快速(短则几十分钟即可)搭建一个具备公网访问能力的网页。尤其在人工智能开发上,可使用Streamlit快速搭建应用环境,让开发人员将更多精力集中在人工智能本身,本文从0开始详细讲解整个应用的构建过程,代码实现了一个简洁的具备公网访问能力的网页版聊天机器人。
本文描述在阿里云上从0开始构建个人/企业专属,具备私域知识库+LLM智能问答钉钉机器人。知识库技术方案使用了Lindorm AI数据服务平台知识库能力,LLM使用了开源ChatGLM2-6B。
清华的chatGLM前段时间发布了第二代chatGLM2-6B,已经开放使用了。本文介绍在云上从0开始搭建ChatGLM-6B LLM环境,供大家参考。
随着AIGC浪潮席卷,再次迎来深度学习热潮。《动手学深度学习 PyTorch版》这本书,注重实战演练,通过手动运行、编写源码可很好的加深对深度学习理论的理解,该书在B站等网站上还有李沐录制的讲解视频,降低了学习门槛,值得推荐。 在阿里云上搭建notebook开发环境过程中踩过一些坑,此文可避免读者重复踩坑。
AIGC:在云上从0开始搭建ChatGLM-6B LLM环境
AIGC短板:知识茧房(缺少行业领域的私域数据,专有问题解答效果差;数据时效性缺陷,对实时要求高的问题效果差)。 解法之一:私域数据Embedding +向量数据库(语义检索---向量相似度匹配)。将问题向量化,结合私域知识库中匹配到的“精确”内容,生成高质量prompt,再结合LLM的既有知识,以及概括、推理、扩展等能力,大大提升回答的准确性。 本文介绍了在阿里云上从0开始搭建langchain-ChatGLM,构建私域知识问答机器人DEMO。可用于日常学习和研究,减少环境搭建时踩坑。
阿里云推出了《[阿里云大模型高级工程师ACP认证》,配套的学习资料较系统性的梳理了提示词、RAG、Agent插件、微调等系列LLM相关知识。推荐大家学习。 该学习课程需要搭建学习环境,可以直接在ECS上构建该环境即可,所需的资源很少,1C1G20G系统盘最低配置即可,本文介绍了详细搭建过程。