暂无个人介绍
原文出自:http://junjiecai.github.io/posts/2016/Oct/20/null_value_comparison/ 感谢~ python原生的None和pandas, numpy中的numpy.NaN尽管在功能上都是用来标示空缺数据。
引用1:https://blog.csdn.net/infty/article/details/42392571 感谢~ 只看定义的话,Tuple会被理解为元素不可变(immutable)的List。
hello,大噶好,最近新学习了利用python实现假设性检验的一些方法,下面结合方法的数学原理做简单的总结~ 假设检验是推论统计中用于检验统计假设的一种方法。
显著性检验通常可以告诉我们一个观测值是否是有效的,例如检测两组样本均值差异的假设检验可以告诉我们这两组样本的均值是否相等(或者那个均值更大)。
上篇博文中的置信区间计算代码在使用过程中并不准确,本人没并没有搞清楚原因 - - 求大神解答: import numpy as np from scipy import stats X1=np.
上回书说到(惊堂木!)Dr. Semmelweis and the discovery of handwashing案例中的第8步中使用了bootstrap分析方法(Bootstrap analysis of Semmelweis handwashing data),其实小弟内心写起来是有一丢丢心虚的,因为本身不是相关专业出身没有系统学习过概率学的方法,加之互联网时代大家皮糙肉厚,其实没太多时间仔细研究某一种具体的方式方法(可能只有我一个人这样)。
#本人数据新手(real - - ),前几天刚刚接触datacamp,感觉还蛮有趣。基本上所有练习都由浅入深,大多数只要能看懂英文大意即可完成。