暂无个人介绍
传统视频目标检测(Video Object Detection, VOD)是离线(offline)的检测任务,即仅考虑算法的检测精度,未考虑算法的延时。流感知(Streaming Perception)任务作为VOD的一个细分方向,采用流平均精度(Streaming Average Precision, sAP)指标,衡量算法的在线(online)检测能力,即同时衡量算法的精度和延时。本文针对现有的流感知工作在训练方式和模型感受野两方面的不足,提出了DAMO-StreamNet,在保证算法实时性的前提下,实现了SOTA的性能。
ModelScope 垂类检测系列模型介绍,该系列模型基于面向工业落地的高性能检测框架DAMOYOLO,其精度和速度超越当前经典的YOLO系列方法。