面试真题·进阶教程·职场干货·思维导图免费分享
变量和数据类型是Python编程的基础,理解这些概念对于编写高效和正确的代码至关重要。通过本文的介绍,希望你能对Python中的变量和常用数据类型有一个清晰的认识,并能够在实际编程中灵活运用这些知识。
近来,TTS模型工具给大家也分享了不少,对于一些小白或有需要的人是提供了一个额外的选项。 但作为编程人员/研发人员,或者需要集成TTS服务的人来说,好像又有点麻烦。 今天就为大家分享一个非常有趣的项目—edge-tts。
这是一本Python入门书。无论您是想学习编程的小学生,还是想参加计算机竞赛的中学生,抑或是计算机相关专业的大学生,甚至是正在从事软件开发的职场人,本书都适合您阅读和学习。但您若想更深入地学习Python并进行深层次应用,则需要选择其他相关图书。
异步编程是一种编程范式,用于处理程序中需要等待异步操作完成后才能继续执行的情况。 异步编程允许程序在执行耗时的操作时不被阻塞,而是在等待操作完成时继续执行其他任务。 这对于处理诸如文件 I/O、网络请求、定时器等需要等待的操作非常有用。
python 函数的参数定义想必大家应该是非常熟悉的,有两种: • 位置参数(positional argument):根据函数在参数列表中的位置传递给函数的参数。 • 关键词参数(keyword argument):通过指定参数名称及其对应值传参的参数。
微软在 UserVoice 上运营着⼀个反馈论坛,每个⼈都可以在这⾥提交新点⼦供他⼈投票。票数最⾼的功能请求是“将 Python 作为Excel 的⼀门脚本语⾔”,其得票数差不多是第⼆名的两倍。尽管⾃2015 年这个点⼦发布以来并没有什么实质性进展,但在 2020 年年末,Python 之⽗ Guido van Rossum 发布推⽂称“退休太无聊了”,他将会加入微软。此事令 Excel ⽤户重燃希望。我不知道他的举动是否影响了 Excel 和 Python 的集成,但我清楚的是,为何⼈们迫切需要结合 Excel 和 Python 的⼒量,⽽你⼜应当如何从今天开始将两者结合起来。总之,这就是本
if __name__ == "__main__" 模式在Python中用于区分模块是被直接运行还是被导入。通过这种模式,可以编写既可以作为独立脚本运行又可以作为模块导入的代码,从而提高代码的重用性和可维护性。
Python是世界上最流行的语言之一,也是编程语言中使用人数增长最快的一种。 开发者经常会很快地发现自己喜欢Python。他们会欣赏Python的表达力、可读性、简洁性和交互性,也会喜欢开源软件开发环境,这个开源环境正在为广泛的应用领域提供快速增长的可重用软件基础。 几十年来,一些趋势已经强有力地显现出来。计算机硬件已经迅速变得更快、更便宜、更小;互联网带宽已经迅速变得越来越大,同时也越来越便宜;优质的计算机软件已经变得越来越丰富,并且通过“开源”方式免费或几乎免费;很快,“物联网”将连接数以百亿计的各种可想象的设备。这将导致以快速增长的速度和数量生成大量数据。 在今天的计算技术中,最新的创新
在编程过程中,错误和异常是不可避免的。Python提供了强大的异常处理机制,帮助我们捕获和处理运行时错误,使程序更加健壮和可靠。本文将带你在十分钟内快速掌握Python的异常处理基础知识。
循环依赖是 Python 开发中需要特别注意的问题。通过重新设计模块结构、延迟导入、依赖注入、利用 Python 的动态特性以及代码重构等方法,可以有效地解决循环依赖问题。这些策略不仅有助于提高代码的可维护性和可读性,还能避免潜在的运行时错误。在实际开发中,开发者应该根据具体情况选择合适的解决方案。
Python 是一种流行的编程语言,在大数据领域有广泛的应用。Python 拥有丰富的库和工具,可用于数据处理、分析和可视化。 在大数据处理方面,Python 可以与 Hadoop、Spark 等大数据框架集成,实现大规模数据的处理和分析。它也适用于数据清洗、数据转换、数据挖掘等任务。 此外,Python 的数据分析库如 Pandas、NumPy 和 Matplotlib 等,提供了强大的数据处理和可视化功能,使得数据分析变得更加简单和高效。
最近一年公司也在卷 LLM 的应用项目,所以我们也从 goper => Pythoner。 这一年使用最多的就是 Python 的 FastAPI 框架。下面一个简易项目让你快速玩转 Python API Web。 API代表应用程序编程接口,是软件开发中最重要的概念之一。它允许程序通过发送和接收数据与其他服务进行交互。API Web 通信最广泛使用的标准之一是 REST,它依赖于JSON 格式或键值对,类似于 Python 的字典。 如果想用 Python 构建一个,那么可以从几个框架中选择。Flask -RESTful、Django Rest Framework 和 FastAPI 是最受
Python 可能是极少数既简单又强大的编程语言中的一种。更重要的是,用它来编程是非常快乐的事。 今天给小伙伴们分享的是阿里“藏经阁”出品的专门给运维工程师设计的Python实战手册
人工智能技术正处于蓬勃发展中,移除图片背景的方法众多,涵盖了各式各样的实现途径和模型。然而,这些方法往往在安装和配置环境方面稍显复杂。今天,介绍一种极其简便的方法——大约30行代码,就能实现这一功能。虽然相比之下可能稍显简单,但对于不太苛刻的需求来说,这种方法颇为方便实用。
本文介绍了如何使用Python的PIL库生成简单的验证码图片和文本。通过实现CaptchaGenerator类,我们可以轻松生成包含随机字符和干扰元素的验证码。这种技术可以应用于Web应用程序中,用于增强用户验证的安全性和可靠性。
这本书由Python pandas项目的创始人Wes McKinney亲自撰写,全面介绍了如何运用Python进行数据操作、处理、清洗和整理等关键技能。
一个可以禁用任意程序的上下行网络的小工具,有倒计时功能
数据加密是一种保护数据安全的技术,通过将数据(明文)转换为不易被未经授权的人理解的形式(密文),以防止数据泄露、篡改或滥用。加密后的数据(密文)可以通过解密过程恢复成原始数据(明文)。数据加密的核心是密码学,它是研究密码系统或通信安全的一门学科,包括密码编码学和密码分析学。
今天给小伙伴们带来了一篇详细介绍 Python 爬虫入门的教程,从实战出发,适合初学者。 小伙伴们只需在阅读过程紧跟文章思路,理清相应的实现代码,30 分钟即可学会编写简单的 Python 爬虫。
很多小伙伴都在学习Python,但是爱看书的找不到适合自己的,这本书可以完美的解决你的问题,还能帮助到很多需要处理数据,做Excel自动方面的。
在 Python 程序中,我们经常需要对文件进行操作。在 Windows 下,文件目录路径使用反斜杠“\”来分隔。然而,在 Python 代码中,反斜杠“\”是转义符,例如“\n”表示换行符、“\t”表示制表符。这样,如果继续使用“\”表示文件路径,就会产生歧义。
用pyhton从网页中爬取数据,是比较常用的爬虫方式。网页一般由html编写,里面包含大量的标签,我们所需的内容都包含在这些标签之中,除了对python的基础语法有了解之外,还要对html的结构以及标签选择有简单的认知,下面就用爬取fl小说网的案例带大家进入爬虫的世界。
前几天淘到一份斯坦福大佬整理的漫画集,几乎讲到了机器学习所有的知识点,包括特征工程、算法模型、评估、优化……熬夜肝完了,真的很不错! 用284张漫画几乎可以吃透机器学习所有知识,就想着赶紧分享给小伙伴们了!
用pyhton从网页中爬取数据,是比较常用的爬虫方式。网页一般由html编写,里面包含大量的标签,我们所需的内容都包含在这些标签之中,除了对python的基础语法有了解之外,还要对html的结构以及标签选择有简单的认知,下面就用爬取fl小说网的案例带大家进入爬虫的世界。
1. 什么是反射 简单来说,反射就是程序在运行时能够"观察"自己,获取、检查和修改自身状态或行为的一种能力。听起来有点抽象?别急,我们慢慢道来。 在Python中,反射允许我们在代码运行时: • 查看对象有哪些属性和方法 • 获取属性的值 • 调用对象的方法 • 甚至动态地添加或修改属性和方法
很多小伙伴都在学习Python,但是爱看书的找不到适合自己的,这本书可以完美的解决你的问题,还能帮助到很多需要处理数据,做Excel自动方面的。 学习数据分析的好处众多,无论是对于个人职业发展还是企业的运营决策都具有重要意义。以下是学习数据分析的主要好处: 1. 提高就业竞争力:在信息化时代,数据分析技能已成为众多行业和岗位的必备技能。掌握数据分析能力意味着你能够处理和分析大量数据,为企业或机构提供有价值的见解和决策支持。因此,学习数据分析可以显著增强你在就业市场上的竞争力。
项目介绍 Crawlab —— 一个基于 Golang 的分布式爬虫管理平台,支持Python、NodeJS、Go、Java、PHP 等多种编程语言以及多种爬虫框架。 主要功能:
在大规模的数据迁移过程中,性能问题往往是开发者面临的主要挑战之一。本文将分析一个数据迁移脚本的优化过程,展示如何从 MySQL 数据库迁移数据到 Django 模型表,并探讨优化前后的性能差异。
爬虫的全称为网络爬虫,简称爬虫,别名有网络机器人,网络蜘蛛等等。 网络爬虫是一种自动获取网页内容的程序,为搜索引擎提供了重要的数据支撑。搜索引擎通过网络爬虫技术,将互联网中丰富的网页信息保存到本地,形成镜像备份。我们熟悉的谷歌、百度本质上也可理解为一种爬虫。 如果形象地理解,爬虫就如同一只机器蜘蛛,它的基本操作就是模拟人的行为去各个网站抓取数据或返回数据。
今天我们来聊一个有趣的话题 - Python沙箱越狱。在我们开始之前,先来搞清楚什么是Python沙箱吧。 简单来,Python沙箱就像是一个虚拟的"游乐场"。在这个游乐场里,你可以尽情地玩耍(运行Python代码),但是不能伤害到外面的世界(不能访问系统资源或执行危险操作)。这个"游乐场"有围栏(限制),有规则(安全策略),目的就是让你玩得开心,又不会搞出什么大乱子。
在当今数字化时代,数据是无处不在的。从市场趋势到个人偏好,从社交媒体活动到商业智能,数据扮演着关键的角色。然而,访问、处理和利用数据并不总是轻而易举的。幸运的是,Python提供了一套强大而灵活的工具,使得网络爬虫和数据抓取成为可能。本文将深入探讨如何利用Python进行网络爬虫和数据抓取,为您打开数据世界的大门。
Python是一种强大而灵活的编程语言,它提供了丰富的数据结构和算法库,但是在处理大规模数据或者需要高效运行的情况下,需要考虑一些优化技巧。本文将介绍一些Python中常用的数据结构与算法优化技巧,并附带代码实例,帮助你更好地理解和运用。
今天就介绍一个用于提取所需数据的方法之一xpath。在后续会讲解bs4(beautifulsoup),re正则表达式。
Python语言以其简洁和强大的特性,成为了数据科学、机器学习和人工智能开发的首选语言之一。随着大模型(Large Language Models, LLMs)如GPT-4的崛起,我们能够利用这些模型实现诸多复杂任务,从文本生成到智能对话、数据分析等等。在这篇文章中,我将介绍如何用Python连接和使用大模型,并通过示例展示如何在实际项目中应用这些技术。
为了展示10个经典的机器学习算法的最简例子,我将为每个算法编写一个小的示例代码。这些算法将包括线性回归、逻辑回归、K-最近邻(KNN)、支持向量机(SVM)、决策树、随机森林、朴素贝叶斯、K-均值聚类、主成分分析(PCA)、和梯度提升(Gradient Boosting)。我将使用常见的机器学习库,如 scikit-learn,numpy 和 pandas 来实现这些算法。
Python 类库(模块)极其丰富,这使得 Python 几乎无所不能,不管是传统的 Web 开发、PC 软件开发、Linux 运维,还是当下火热的机器学习、大数据分析、网络爬虫,Python 都能胜任。 今天给小伙伴们分享的这份Python入门教程大全是从gitee上扒下来的,这套教程不是教科书,不会玩弄概念,而是力求口语化和通俗化,让读者尽快入门。
问题记录 UI显示异常 安装多个主题时,当禁用某些主题,切换回one dark theme时,发现代码编辑窗口背景变成白色,菜单栏其他地方背景为黑色 问题原因 查看Settings>Editor>Color Scheme>General,发现方案被改为-Classic Light
今天我们来聊聊Python里的反序列化攻击。先来看看什么是序列化和反序列化。简单来说,序列化就是把数据结构转换成字节流,这样我们就可以把数据保存到文件里或者通过网络传输。反序列化则是把这些字节流再转换回原来的数据结构。 在Python里,常用的模块之一就是Pickle。它可以帮我们很方便地进行序列化和反序列化操作。比如,你可以把一个复杂的Python对象序列化保存下来,等需要用的时候再反序列化回来。 反序列化攻击的概述 反序列化过程有漏洞:如果我们反序列化了一个不可信的数据源,那就可能引发反序列化攻击。攻击者可以在序列化的数据里嵌入恶意代码,当你反序列化这个数据时,这些恶意代码就会被执
Python简单易学,且提供了丰富的第三方库,可以用较少的代码完成较多的工作,使开发者能够专注于如何解决问题而只花较少的时间去考虑如何编程。 此外,Python还具有免费开源、跨平台、面向对象、胶水语言等优点,在系统编程、图形界面开发、科学计算、Web开发、数据分析、人工智能等方面有广泛应用。 尤其是在数据分析和人工智能方面,Python已成为最受开发者欢迎的编程语言之一,不仅大量计算机专业人员选择使用Python进行快速开发,许多非计算机专业人员也纷纷选择Python语言来解决专业问题。 由于Python应用广泛,关于Python的参考书目前已经有很多,但将Python编程与数据分析、人工智
数据迁移是许多应用程序开发过程中必不可少的一部分。在这篇文章中,我们将详细分析和总结如何通过一个定制的 Django 管理命令,将数据从 MySQL 数据库迁移到 Django 模型表中。这种方法可以确保数据在多个数据库之间有效且安全地迁移,同时避免了手动操作的繁琐和错误。
分类任务: 开发一个神经网络,预测一氧化碳 (CO) 浓度是否超过某一阈值(CO(GT) 值的平均值)。这项任务涉及二元分类,即您的模型学会将实例分为两类:高于或低于阈值。阈值。要确定阈值,您必须首先计算CO(GT) 的平均值,其中不包括未知数据(缺失值)。然后,使用该阈值来预测网络预测的值是高于还是低于该阈值。但是您的网络应该能够处理缺失值。
今天来讲一下损失函数——交叉熵函数,什么是损失函数呢?大体就是真实与预测之间的差异,这个交叉熵(Cross Entropy)是Shannon信息论中一个重要概念,主要用于度量两个概率分布间的差异性信息。在信息论中,交叉熵是表示两个概率分布 p,q 的差异,其中 p 表示真实分布,q 表示预测分布,那么 H(p,q)就称为交叉熵:
很多人会误解JSON仅仅是序列化后的String,但这样的表述并不完全准确。JSON本质上是以字符串(String)形式表示的数据交换格式,但它不仅仅是一个字符串,而是具有特定语法和结构的字符串。 很经常遇到的一个场景: 后端:我给你返回了一段JSON,你转化下再遍历吧。
本篇主要讲清楚什么是状态机,简洁的状态机对支付系统的重要性,状态机设计常见误区,以及如何设计出简洁而精妙的状态机,核心的状态机代码实现等。 我前段时间面试一个工作过4年的同学竟然没有听过状态机。假如你没有听过状态机,或者你听过但没有写过,或者你是使用if else 或switch case来写状态机的代码实现,建议花点时间看看,一定会有不一样的收获。
MATLAB(Matrix Laboratory)是MathWorks公司推出的用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境的商业数学软件。 MATLAB具有数值分析、数值和符号计算、工程与科学绘图、数字图像处理、财务与金融工程等功能,为众多科学领域提供了全面的解决方案。
说到人工智能必然要了解机器学习,从信息化软件,到电子商务,然后到高速发展互联网时代,到至今的云计算、大数据等,渗透到我们的生活、工作之中,在互联网的驱动下,人们更清晰的认识和使用数据,不仅仅是数据统计、分析,我们还强调数据挖掘、预测。 机器学习就是对计算机一部分数据进行学习,然后对另外一些数据进行预测与判断。 机器学习的核心是”使用算法解析数据,从中学习,然后对新数据作出决定或预测”。也就是说计算机利用已获取的数据得出某一模型,然后利用此模型进行预测的一种方法,这个过程跟人的学习过程有些类似,比如人获取一定的经验,可以对新问题进行预测。
在学习和工作中,我们经常需要使用日志来记录程序的运行状态和调试信息。而为了更好地区分不同的日志等级,我们可以使用不同的颜色来呈现,使其更加醒目和易于阅读。 在下图运行结果中,我们使用了 colorlog 库来实现彩色日志输出。通过定义不同日志等级对应的颜色,我们可以在控制台中以彩色的方式显示日志信息。例如,DEBUG 级别的日志使用白色,INFO 级别的日志使用绿色,WARNING 级别的日志使用黄色,ERROR 级别的日志使用红色,CRITICAL 级别的日志使用蓝色。
平时在网上搜索图片,另存为时常常遇到 WebP 格式,而非常见的 JPG、PNG、JPEG 格式,所以以此文记录一下WebP的读取和转换方法,希望对大家有所帮助!🥸
机器学习正在迅速成为数据驱动型世界的一个必备模块。许多不同的领域,如机器人、医学、零售和出版等,都需要依赖这门技术。 机器学习是近年来渐趋热门的一个领域,同时 Python 语言经过一段时间的发展也已逐渐成为主流的编程语言之一。今天给小伙伴们分享的这份手册结合了机器学习和 Python 语言两个热门的领域,通过易于理解的项目详细讲述了如何构建真实的机器学习应用程序。
数据集描述 数据集中每个分子具有三个构建块。该数据集用于表示分子的三个构建块是否能够与蛋白质相结合,如果能够结合标记为binds为1,否则binds为0. 格式描述如下: • id- 我们用来识别分子结合靶标对的独特example_id。 • buildingblock1_smiles- 在SMILES中,第一个构建块的结构 • buildingblock2_smiles- 在SMILES中,第二个构建块的结构 • buildingblock3_smiles- 在SMILES中,第三个构建块的结构 • molecule_smiles- 完全组装的分子的结构,在SMILES中。这包括三个构建单元