暂无个人介绍
智慧楼宇调度,是在保证社区负荷需求的情况下,通过储能设备的指令控制,以用电经济性、环保性和对电网稳定性为综合目标的一种调度场景。
近年来,在实现“双碳”目标的道路上,以风、光为代表的可再生能源作为缓解能源压力、促进可持续发展的重要途径广受关注。虚拟电厂作为一种区域性多能源聚合形式,实现了可再生能源大量接入电力系统运行,推动城市能源系统绿色高效发展。研究大规模常态化运行的虚拟电厂关键技术成为亟待解决的问题。分布式光伏、分布式储能及可控负荷等灵活性资源具有容量小、资源种类多、数量庞大等特点,难以直接参与电网互动运行。虚拟电厂有效聚合电源、负荷、储能等各类资源,参与电力市场,响应价格信号,为电网提供调峰、调频、调压与备用等辅助服务。
本系列将讲解多篇运输问题的示例,讲解对于不同的运输问题场景,用数学规划的方法进行线性规划问题建模,并进行求解得到解决方案。
PIP是通用的Python包管理工具,用于第三方库的查找、下载、安装、卸载等功能,使用简单。MindOpt优化求解器已经将安装包上传至Python第三方库,也支持通过pip安装Python SDK了,并且此方式安装无需再配置license文件。
本系列将讲解多篇运输问题的示例,讲解对于不同的运输问题场景,用数学规划的方法进行线性规划问题建模,并进行求解得到解决方案。
MindOpt在使用单纯形法求解线性规划问题这一功能上已经取得了不错的成绩,但在实际生活中,可能会遇到一些结构特殊的线性规划问题,这类问题可能存在比单纯形法更加简便的算法。本篇小编将介绍MindOpt如何求解这么一类特殊结构的线性规划问题——运输问题。
V0.24.0版本的MindOpt优化求解器新增了数据脱敏功能,可以对输入模型文件进行数据脱敏。将优化问题中问题名、决策变量、约束条件名称这些和业务场景相关的数据进行脱敏变更,使得优化问题的数据仅保留看不出用途的数值信息,隐藏业务信息。方便外发数据去做技术可行性验证、方案咨询、测试等。
支持向量机(Support Vector Machine, SVM),是一类按监督学习方式对数据进行分类的线性分类器。其核心思想是在特征空间内找到使不同类别的样本间距最大的决策边界。SVM模型中经常会引入正则化项(regularization term)来提高模型鲁棒性或者引入先验知识。L1 - regularized SVM就是在模型中加入L1正则化项(也即 ||x||1 ),将特征向量的稀疏性(会令特征向量x中某一些参数等于0)这个先验知识引入到模型中,进而提高分类效率。
本篇我们讲述的是Linear Regression线性回归中的鲁棒线性回归。鲁棒回归又称为稳健回归,是统计学稳健估计的方法之一,主要思路是对离群点十分敏感的最小二乘回归中的的函数进行修改。
有线电视的时代已经过去,现在大家都是在线观看电影、短视频等。相信大家会发现大数据会根据个人的“喜好”推荐一些类似的视频内容,线上的流量是有限的,那么如何推荐,能保证视频播放量,还可以最大化视频播放总量呢?
mindopt案例——Flow shop-流线型调度问题
营养调配问题的的目标是利用优化模型来设定每日饮食菜单,在满足各类营养的需求同时更能优化总成本
在编译器中可选参数是指在调用的时候可以选择传入参数或者不传入参数,但在我们MindOpt优化求解器中的意思是指可以选择输入参数控制求解器的行为,如优化方法、求解流程,以及终止条件,或是对远程计算服务进行配置等。
在对实际应用中的优化问题进行建模求解的过程中,往往会遇到问题不可行的情况。而不可行问题必然是由某些约束互相之间冲突导致的,如何分析问题的不可行性并识别出导致冲突的关键约束成为求解器应用的重要一环。这类导致问题不可行的最小约束子集被称为不可约不可行系统 (IIS, irreduciable infeasible system)。
MindOpt建模语言(MindOpt Algebraic Programming Language, MindOpt APL, 简称为MAPL)是MindOpt团队研发的一种代数建模语言。相比与其他的语言,MAPL语法相对较少且自然,很贴近数学语言。用MAPL描述数学规划模型与用数学公式进行描述非常类似。
MindOpt是达摩院决策智能实验室研究的一款优化求解器,目前在优化求解线性规划问题这一功能上取得不错的成绩,希望大家能够帮我们多多打磨其他功能(混合整数线性规划、二次规划、半定规划目前都在公测),让我们的MindOpt在优化求解器这板块成为国产之光。
MindOpt是达摩院决策智能实验室研究的一款优化求解器,目前在优化求解线性规划问题这一功能上取得不错的成绩,希望大家能够帮我们多多打磨其他功能(混合整数线性规划、二次规划、半定规划目前都在公测),让我们的MindOpt在优化求解器这板块成为国产之光。
MindOpt是达摩院决策智能实验室研究的一款优化求解器,能帮助做方案设计、生产方案优化、资源合理分配、辅助决策等。可以支持命令行、c、c++、java和python调用,目前求解算法实现了线性规划、混合整数线性规划、二次规划。
MindOpt是达摩院决策智能实验室研究的一款优化求解器,能帮助做方案设计、生产方案优化、资源合理分配、辅助决策等。可以支持命令行、c、c++、java和python调用,目前求解算法实现了线性规划、混合整数线性规划、二次规划。
MindOpt是达摩院决策智能实验室研究的一款优化求解器,能帮助做方案设计、生产方案优化、资源合理分配、辅助决策等。可以支持命令行、c、c++、java和python调用,目前求解算法实现了线性规划、混合整数线性规划、二次规划。
MindOpt是达摩院决策智能实验室研究的一款优化求解器,能帮助做方案设计、生产方案优化、资源合理分配、辅助决策等。可以支持命令行、c、c++、java和python调用,目前求解算法实现了线性规划、混合整数线性规划、二次规划。
MindOpt是一款高效的优化算法软件包,求解算法实现了线性规划(LP)、混合整数线性规划(MILP)、二次规划(QP),可以支持命令行、c、c++、java和python调用。接下来我们将发布一系列文章,讲述各个语言如何使用 MindOpt 来求解数学规划问题。
MindOpt是一款高效的优化算法软件包,求解算法实现了线性规划(LP)、混合整数线性规划(MILP)、二次规划(QP),可以支持命令行、c、c++、java和python调用。接下来我们将发布一系列文章,讲述各个语言如何使用 MindOpt 来求解数学规划问题。
MindOpt是一款高效的优化算法软件包,求解算法实现了线性规划(LP)、混合整数线性规划(MILP)、二次规划(QP),可以支持命令行、c、c++、java和python调用。接下来我们将发布一系列文章,讲述各个语言如何使用 MindOpt 来求解数学规划问题