暂时未有相关云产品技术能力~
YOLO骨灰级玩家
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力本文提出了一种简单且高效的卷积神经网络(ConvNets)注意力模块——SimAM。与现有模块不同,SimAM通过优化能量函数推断特征图的3D注意力权重,无需添加额外参数。SimAM基于空间抑制理论设计,通过简单的解决方案实现高效计算,提升卷积神经网络的表征能力。代码已在Pytorch-SimAM开源。
【YOLOv11改进 - 注意力机制】 MHSA:多头自注意力(Multi-Head Self-Attention)BoTNet是一种将自注意力机制引入ResNet的创新架构,通过在最后三个瓶颈块中用全局自注意力替换空间卷积,显著提升了图像分类、物体检测和实例分割的性能,同时减少了参数量和计算开销。在COCO实例分割和ImageNet分类任务中,BoTNet分别达到了44.4%的Mask AP和84.7%的Top-1准确率,超越了现有模型。
【YOLOv11改进 - 注意力机制】EMA(Efficient Multi-Scale Attention):基于跨空间学习的高效多尺度注意力.EMA(Efficient Multi-Scale Attention)模块是一种高效多尺度注意力机制,旨在提高计算机视觉任务中的特征表示效果。该模块通过结合通道和空间信息、采用多尺度并行子网络结构以及优化坐标注意力机制,实现了更高效和有效的特征表示。EMA模块在图像分类和目标检测任务中表现出色,使用CIFAR-100、ImageNet-1k、MS COCO和VisDrone2019等数据集进行了广泛测试。
【YOLOv11改进 - 注意力机制】iRMB: 倒置残差移动块,即插即用的轻量注意力本文提出了一种新的轻量级密集预测模型EMO,结合高效的倒置残差块(IRB)和Transformer组件,设计了单残差元移动块(MMB)和倒置残差移动块(iRMB)。EMO在ImageNet-1K、COCO2017和ADE20K基准上表现出色,参数、效率和准确度达到良好平衡,尤其在iPhone14上运行速度比EdgeNeXt快2.8-4.0倍。
YOLOv11是Ultralytics团队推出的最新版本,相比YOLOv10带来了多项改进。主要特点包括:模型架构优化、GPU训练加速、速度提升、参数减少以及更强的适应性和更多任务支持。YOLOv11支持目标检测、图像分割、姿态估计、旋转边界框和图像分类等多种任务,并提供不同尺寸的模型版本,以满足不同应用场景的需求。
《YOLO11目标检测创新改进与实战案例》专栏已更新100+篇文章,涵盖注意力机制、卷积优化、检测头创新、损失与IOU优化、轻量级网络设计等多方面内容。每周更新3-10篇,提供详细代码和实战案例,帮助您掌握最新研究和实用技巧。[专栏链接](https://blog.csdn.net/shangyanaf/category_12810477.html)
【YOLOv11改进 - 注意力机制】LSKA(Large Separable Kernel Attention):大核分离卷积注意力模块
【YOLO11改进 - C3k2融合】C3k2融合YOLO-MS的MSBlock : 分层特征融合策略,轻量化网络结构
【YOLOv8改进 - 注意力机制】c2f结合CBAM:针对卷积神经网络(CNN)设计的新型注意力机制
【YOLOv8改进 - 特征融合】DySample :超轻量级且高效的动态上采样器
【YOLOv8改进 - 特征融合】CARAFE:轻量级新型上采样算子,助力细节提升
【YOLOv8改进 - 特征融合NECK】 DAMO-YOLO之RepGFPN :实时目标检测的创新型特征金字塔网络
【YOLOv8改进 - 特征融合】 YOGA iAFF :注意力机制在颈部的多尺度特征融合
【YOLOv8改进 - Backbone主干】清华大学CloFormer AttnConv :利用共享权重和上下文感知权重增强局部感知,注意力机制与卷积的完美融合
【YOLOv8改进 - Backbone主干】VanillaNet:极简的神经网络,利用VanillaNet替换YOLOV8主干
【YOLOv8改进 - Backbone主干】VanillaNet:极简的神经网络,利用VanillaBlock降低YOLOV8参数
【YOLOv8改进 - Backbone主干】ShuffleNet V2:卷积神经网络(CNN)架构
【YOLOv8改进 - 注意力机制】Sea_Attention: Squeeze-enhanced Axial Attention,结合全局语义提取和局部细节增强
【YOLOv8改进 - Backbone主干】FasterNet:基于PConv(部分卷积)的神经网络,提升精度与速度,降低参数量。
【YOLOv8改进 - 注意力机制】SENetV2: 用于通道和全局表示的聚合稠密层,结合SE模块和密集层来增强特征表示
【YOLOv8改进 - Backbone主干】EfficientRep:一种旨在提高硬件效率的RepVGG风格卷积神经网络架构
【YOLOv8改进 - 注意力机制】ContextAggregation : 上下文聚合模块,捕捉局部和全局上下文,增强特征表示
【YOLOv8改进- Backbone主干】BoTNet:基于Transformer,结合自注意力机制和卷积神经网络的骨干网络
【YOLOv8改进- 多模块融合改进】GhostConv + ContextAggregation 幽灵卷积与上下文聚合模块融合改进,助力小目标高效涨点
YOLO目标检测专栏探讨了Transformer在视觉任务中的效能与计算成本问题,提出EfficientViT,一种兼顾速度和准确性的模型。EfficientViT通过创新的Cascaded Group Attention(CGA)模块减少冗余,提高多样性,节省计算资源。在保持高精度的同时,与MobileNetV3-Large相比,EfficientViT在速度上有显著提升。论文和代码已公开。CGA通过特征分割和级联头部增加注意力多样性和模型容量,降低了计算负担。核心代码展示了CGA模块的实现。
YOLO目标检测专栏探讨了模型优化,提出SPConv,一种新卷积操作,减少特征冗余,提升效率。SPConv将特征分为代表性和不确定部分,分别处理,再融合。实验显示,SPConv在速度和准确性上超越现有基准,减少FLOPs和参数。论文和PyTorch代码已公开。更多详情及实战案例见CSDN博客链接。
YOLO目标检测专栏探讨了模型创新,如注意力机制,聚焦通道和空间信息的全局注意力模组(GAM),提升DNN性能。GAM在ResNet和MobileNet上优于最新方法。论文及PyTorch代码可在给出的链接找到。核心代码展示了GAM的构建,包含线性层、卷积和Sigmoid激活,用于生成注意力图。更多配置详情参阅相关博客文章。
YOLO目标检测专栏聚焦模型创新与实战,介绍了一种高效通道注意力模块(ECA),用于提升CNN性能。ECA仅用少量参数实现显著性能增益,避免了维度缩减,通过1D卷积进行局部跨通道交互。代码实现展示了一个ECA层的结构,该层在多种任务中展现优秀泛化能力,同时保持低模型复杂性。论文和代码链接分别指向arXiv与GitHub。更多详情可查阅CSDN博主shangyanaf的相关文章。
YOLO目标检测专栏聚焦于模型的改进和实战应用,介绍了MobileNetV4,它在移动设备上优化了架构。文章提到了UIB(通用反向瓶颈)模块,结合了多种结构,增强了特征提取;Mobile MQA是专为移动平台设计的注意力层,提升了速度;优化的NAS提升了搜索效率。通过这些创新,MNv4在不同硬件上实现了性能和效率的平衡,且通过蒸馏技术提高了准确性。模型在Pixel 8 EdgeTPU上达到87%的ImageNet-1K准确率,延迟仅为3.8ms。论文、PyTorch和TensorFlow实现代码链接也已提供。
YOLO目标检测专栏介绍了PP-LCNet,一种基于MKLDNN加速的轻量级CPU网络,提升了模型在多任务中的性能。PP-LCNet利用H-Swish、大核卷积、SE模块和全局平均池化后的全连接层,实现低延迟下的高准确性。代码和预训练模型可在PaddlePaddle的PaddleClas找到。文章提供了网络结构、核心代码及性能提升的详细信息。更多实战案例和YOLO改进见相关链接。
YOLO目标检测专栏探讨了YOLO的创新改进,如多尺度特征提取的DWRSeg网络。该网络通过区域残差化和语义残差化提升效率,使用DWR和SIR模块优化高层和低层特征。DWRSeg在Cityscapes和CamVid数据集上表现优秀,速度与准确性兼备。论文和代码已公开。核心代码展示了一个包含DWR模块的卷积层。更多配置详情见相关链接。
YOLOv8专栏探讨了该目标检测模型的创新改进,包括使用Mamba模型的线性注意力Transformer变体,称为MLLA。Mamba的成功关键在于遗忘门和块设计,MLLA结合了这些优点,提升了视觉任务的性能。文章提供全面分析,并提出MLLA模型,其在效率和准确性上超过多种视觉模型。论文和代码可在提供的链接中找到。MLLA Block的代码示例展示了如何整合关键组件以实现高效运算。更多配置详情见相关链接。
这个摘要主要涵盖了一个关于YOLO目标检测的深度学习专栏的内容概览。该专栏专注于YOLO算法的历史、前沿研究和实战应用,提供了一系列的文章,详细讲解了YOLO的改进方法,包括卷积优化、损失函数创新、注意力机制、网络结构和主干网络的更新,以及针对不同场景如红外成像、小目标检测等的应用。此外,还提供了每周多次的更新频率以保持内容的时效性,并指导读者进行论文写作和项目实现,包括具体的代码示例和实战项目,如行人检测、对象分割、姿态估计等。该专栏还涉及到面试准备和实习就业指导,帮助读者提升在图像算法领域的专业技能。
YOLOv8专栏探讨了针对目标检测的ConvNet创新,提出ConvNeXt模型,它挑战Transformer在视觉任务中的主导地位。ConvNeXt通过增大卷积核、使用GeLU激活、切换到LayerNorm和改进下采样层,提升了纯ConvNet性能,达到与Transformer相当的准确率和效率。论文和代码已公开。
YOLOv8专栏探讨了目标检测的创新改进,包括模型扩展和神经架构搜索。提出的新方法使用复合系数平衡网络的深度、宽度和分辨率,产生了EfficientNets系列,其在准确性和效率上超越了先前的ConvNets。EfficientNet-B7在ImageNet上达到84.3%的顶级准确率,同时保持较小的模型大小和更快的推理速度。文章提供了论文和代码链接,以及核心的EfficientNet模型构建Python代码。
YOLOv8专栏探讨了该目标检测算法的创新改进,包括使用聚焦线性注意力模块,解决了Transformer在视觉任务中的效率和表达力问题。该模块增强自注意力,提高焦点能力和特征多样性,保持线性复杂度。文章提供了实证证据证明其在多个基准上的性能提升,并在GitHub上发布了代码。论文和更多实战案例链接见文中。
YOLOv8专栏探讨了目标检测的创新改进,提出了GiraffeDet,一种轻量级主干和深度颈部模块结合的高效检测网络。GiraffeDet使用S2D-chain和GFPN,优化多尺度信息交换,提升检测性能。代码和论文可在相关链接找到。GFPN通过跳跃和跨尺度连接增强信息融合。文章还展示了核心组件如SPPV4、Focus和CSPStage的代码实现。
YOLOv8专栏介绍了FocalNets,一种取代自注意力的新型模块,提升模型在图像分类、检测和分割任务中的性能。Focal Modulation包括局部聚焦、全局调制和多尺度处理,通过融合CNN和自注意力优点。代码展示了FocalModulation模块的实现。论文和代码已开源。在多个基准测试中,FocalNets超越了Swin等先进模型。
YOLOv8专栏探讨了YOLO系列的创新改进,提出RCS-YOLO模型,它在脑肿瘤检测中超越YOLOv6/v7/v8,精度提升1%,速度增快60%(达到114.8 FPS)。RCS-OSA模块结合RepVGG/ShuffleNet优点,通过通道重参数化和混洗优化卷积,提升速度和准确性。代码和论文可在提供的链接获取。
YOLOv8专栏探讨了深度学习中信息瓶颈问题,提出可编程梯度信息(PGI)和广义高效层聚合网络(GELAN),改善轻量级模型的信息利用率。GELAN在MS COCO数据集上表现优越,且PGI适用于不同规模的模型,甚至能超越预训练SOTA。[论文](https://arxiv.org/pdf/2402.13616)和[代码](https://github.com/WongKinYiu/yolov9)已开源。核心组件RepNCSPELAN4整合了RepNCSP块和卷积。更多详情及配置参见相关链接。
YOLOv8专栏探讨了MLP主干网络的创新,如S2-MLPv2,它通过通道扩展和分块空间移位提高性能,达到83.6%的ImageNet top-1准确率。文章介绍了分割注意力模块,用于融合特征图。提供了S2Attention类的代码示例,展示如何结合空间位移和分割注意力。详细内容和实战案例可在[CSDN博客](https://blog.csdn.net/shangyanaf)找到。
YOLOv8专栏探讨了目标检测的创新改进,如整合NLNet和SENet优势的GCBlock,用于高效全局上下文建模。GCNet在多个识别任务中表现优越,同时降低了计算成本。文章提供了论文、代码链接及详细实现,包括特征的全局建模、变换和融合步骤。核心GCBlock代码展示了其结构。更多实战案例和配置见相关链接。
YOLOv8专栏探讨了卷积网络的改进,特别是提出了一种名为HWD的基于Haar小波的下采样模块,用于语义分割,旨在保留更多空间信息。HWD结合了无损编码和特征表示学习,提高了模型性能并减少了信息不确定性。新度量标准FEI量化了下采样的信息保留能力。论文和代码可在提供的链接中找到。核心代码展示了如何在PyTorch中实现HWD模块。
YOLOv8专栏探讨了该目标检测模型的创新改进,如双重注意力块,它通过全局特征聚合和分配提升效率。该机制集成在ResNet-50中,在ImageNet上表现优于ResNet-152。文章提供了论文、代码链接及核心代码示例。更多实战案例与详细配置见相关CSDN博客链接。
YOLOv8专栏探讨了该目标检测算法的创新改进,包括新机制和实战案例。文章介绍了U-Net v2,一种用于医学图像分割的高效U-Net变体,它通过SDI模块融合语义和细节信息,提升分割准确性。SDI模块结合空间和通道注意力,经通道减缩、尺寸调整和平滑后,用哈达玛积融合特征。提供的核心代码展示了SDI模块的实现。更多详情和论文、代码链接见原文。
YOLOv8专栏介绍了该系列目标检测框架的最新改进与实战应用。文章提出RT-DETR,首个实时端到端检测器,解决了速度与精度问题。通过高效混合编码器和不确定性最小化查询选择,RT-DETR在COCO数据集上实现高AP并保持高帧率,优于其他YOLO版本。论文和代码已开源。核心代码展示了AIFI Transformer层,用于位置嵌入。更多详情见[YOLOv8专栏](https://blog.csdn.net/shangyanaf/category_12303415.html)。
YOLO目标检测专栏介绍了HCF-Net,一种针对红外小目标检测的深度学习模型,包含PPA、DASI和MDCR模块。PPA利用多分支注意力捕获多层次特征,DASI实现自适应特征融合,MDCR通过深度可分离卷积细化空间特征。HCF-Net在SIRST数据集上的实验超越其他模型。论文和代码可在提供的链接中找到。DASI模块通过信道分区选择机制动态融合高维和低维特征。YOLOv8引入了DASI结构,结合不同尺度特征以增强小目标检测。更多配置细节参见相关链接。
YOLO系列目标检测模型的新发展,LS-YOLO专为滑坡检测设计。它使用多尺度滑坡数据集(MSLD)和多尺度特征提取(MSFE)模块,结合ECA注意力,提升定位精度。通过改进的解耦头,利用膨胀卷积增强上下文信息。在滑坡检测任务中,LS-YOLO相对于YOLOv5s的AP提高了2.18%,达到97.06%。论文和代码已开源。
YOLO目标检测专栏探讨了BoTNet,一种在ResNet瓶颈块中用全局自注意力替换卷积的架构,提升实例分割和检测性能。BoTNet表现优于先前的ResNeSt,且在ImageNet上速度更快。文章介绍了多头自注意力(MHSA)机制,用于学习输入的不同部分间的关系。BoTNet的MHSA层整合在低分辨率特征图中,以捕获长距离依赖。YOLOv8进一步引入MHSA,通过具体的模块定义(如提供的`MHSA`类)来增强模型的注意力机制。相关论文和代码链接可供参考。
HCF-Net是针对红外小目标检测的深度学习模型,采用U-Net改进架构,包含PPA、DASI和MDCR模块。PPA利用多分支特征提取增强小目标表示,DASI实现自适应通道融合,MDCR通过多扩张率深度可分离卷积细化空间特征。实验显示,HCF-Net在SIRST数据集上表现出色,超越其他方法。代码和论文可在给出的链接获取。