公众号:matworld。 博主简介: 1.无线基带,无线图传,编解码 ; 2.机器视觉,图像处理,三维重建 ; 3.人工智能,深度学习 ; 4.智能控制,智能优化。 MATLAB/FPGA项目合作开发,项目源码请关注公众号
本项目基于FPGA实现16QAM调制解调通信系统,使用Verilog语言编写,包括信道模块、误码率统计模块。通过设置不同SNR值(如8dB、12dB、16dB),仿真测试系统的误码性能。项目提供了完整的RTL结构图及操作视频,便于理解和操作。核心程序实现了信号的生成、调制、信道传输、解调及误码统计等功能。
本文介绍了基于Matlab 2022a的几种信道估计算法仿真,包括LS、OMP、NOMP、CoSaMP及改进的BP神经网络CoSaMP算法。各算法针对毫米波MIMO信道进行了性能评估,通过对比不同信噪比下的均方误差(MSE),展示了各自的优势与局限性。其中,BP神经网络改进的CoSaMP算法在低信噪比条件下表现尤为突出,能够有效提高信道估计精度。
### 简介 本项目采用VIVADO 2019.2进行了十六进制相位移键控(16PSK)算法仿真,结果显示,在SNR=30dB时效果为Tttttttttttttt12,在SNR=20dB时效果为Tttttttttttttt34。系统RTL结构如Tttttttttttttt555555所示。16PSK是一种高效的相位调制技术,能在每个符号时间内传输4比特信息,适用于高速数据传输。其工作原理包括将比特流映射到16个相位状态之一(Tttttttttttttt777777),并通过匹配滤波和决策进行解调。具体Verilog核心程序见完整代码。
本文介绍了使用MATLAB 2022a进行强化学习算法仿真的效果,并详细阐述了Q-Learning原理及其在机器人避障和路径规划中的应用。通过Q-Learning算法,机器人能在未知环境中学习到达目标的最短路径并避开障碍物。仿真结果展示了算法的有效性,核心程序实现了Q表的更新和状态的可视化。未来研究可扩展至更复杂环境和高效算法。等图像展示了具体仿真过程。
本系统在原有的8PSK调制解调基础上,新增了高斯信道与误码率统计模块,验证了不同SNR条件下的8PSK性能。VIVADO2019.2仿真结果显示,在SNR分别为30dB、15dB和10dB时,系统表现出不同的误码率和星座图分布。8PSK作为一种高效的相位调制技术,广泛应用于无线通信中。FPGA凭借其高度灵活性和并行处理能力,成为实现此类复杂算法的理想平台。系统RTL结构展示了各模块间的连接与协同工作。
该研究采用MATLAB 2022a仿真大规模MIMO系统中的信道估计,利用压缩感知技术克服传统方法的高开销问题。在稀疏信号恢复理论基础上,通过CoSaMP等算法实现高效信道估计。核心程序对比了LS、OMP、NOMP及CoSaMP等多种算法的均方误差(MSE),验证其在不同信噪比下的性能。仿真结果显示,稀疏CoSaMP表现优异。
本文介绍了现代光纤通信系统中的星座图整形技术,包括标准QAM、概率整形QAM和几何整形QAM三种方法,并对比了它们的原理及优缺点。MATLAB 2022a仿真结果显示了不同技术的效果。标准QAM实现简单但效率有限;概率整形QAM通过非均匀符号分布提高传输效率;几何整形QAM优化星座点布局,增强抗干扰能力。附带的核心程序代码展示了GMI计算过程。
本系统基于MATLAB 2017b,对AODV与LEACH自组网进行了升级仿真,新增运动节点路由测试,修正丢包率统计。AODV是一种按需路由协议,结合DSDV和DSR,支持动态路由。程序包含参数设置、消息收发等功能模块,通过GUI界面配置节点数量、仿真时间和路由协议等参数,并计算网络性能指标。 该代码实现了节点能量管理、簇头选举、路由发现等功能,并统计了网络性能指标。
本项目基于Vivado 2019.2实现了2ASK调制解调系统,新增高斯信道及误码率统计模块,验证了不同SNR条件下的ASK误码表现。2ASK通过改变载波振幅传输二进制信号,其调制解调过程包括系统设计、Verilog编码、仿真测试及FPGA实现,需考虑实时性与并行性,并利用FPGA资源优化非线性操作。
该简介展示了使用MATLAB 2022a进行无线通信信道仿真的结果,仿真表明信道的时间、频率和空间相关性随间隔增加而减弱,并且宏小区与微小区间的相关性相似。文中介绍了SCM和SCME模型,分别用于WCDMA和LTE/5G系统仿真,重点在于其空间、时间和频率相关性的建模。SCME模型在SCM的基础上进行了扩展,提供了更精细的参数化,增强了模型的真实性和复杂度。最后附上了MATLAB核心程序,用于计算不同天线间距下的空间互相关性。
该研究利用MATLAB 2022a进行了3D-MIMO技术的仿真,结果显示了不同场景下的LOS概率曲线。3D-MIMO作为5G关键技术之一,通过三维天线阵列增强了系统容量和覆盖范围。其信道模型涵盖UMa、UMi、RMa等场景,并分析了LOS/NLOS传播条件下的路径损耗、多径效应及空间相关性。仿真代码展示了三种典型场景下的LOS概率分布。
本文介绍了大规模MIMO系统中的信道估计方法,包括最小二乘法(LS)、正交匹配追踪(OMP)、多正交匹配追踪(MOMP)和压缩感知算法CoSaMP。展示了MATLAB 2022a仿真的结果,验证了不同算法在信道估计中的表现。最小二乘法适用于非稀疏信道,而OMP、MOMP和CoSaMP更适合稀疏信道。MATLAB核心程序实现了这些算法并进行了性能对比。以下是部分
该系统在原有的QPSK调制解调基础上,新增了高斯信道和误码率统计模块,验证了不同SNR条件下的QPSK误码性能。系统包括数据生成、QPSK调制与解调等模块,使用Vivado 2019.2进行仿真,展示了SNR分别为15dB、10dB、5dB和1dB时的误码情况。系统采用Verilog语言实现,具有高效、可靠的特点。
基于MATLAB 2022a的仿真展示了OFDM+QPSK系统中最小二乘(LS)算法的信道估计与均衡效果。OFDM利用多个低速率子载波提高频谱效率,通过循环前缀克服多径衰落。LS算法依据导频符号估计信道参数,进而设计均衡器以恢复数据符号。核心程序实现了OFDM信号处理流程,包括加性高斯白噪声的加入、保护间隔去除、快速傅立叶变换及信道估计与均衡等步骤,并最终计算误码率,验证了算法的有效性。
本MATLAB 2022a仿真展示了不同QAM阶数下的星座图及误码率性能,通过星座图整形技术优化了系统性能。该技术利用非均匀分布的星座点提高功率效率,并通过合理布局增强抗干扰能力。随着QAM阶数增加,数据传输速率提升,但对信道质量要求也更高。核心程序实现了从比特生成到QAM映射、功率归一化、加噪及解调的全过程,并评估了系统误码率。
本系统基于Vivado2019.2,在原有BPSK调制解调基础上新增高斯信道及误码率统计模块,可测试不同SNR条件下的误码性能。仿真结果显示,在SNR=0dB时误码较高,随着SNR增至5dB,误码率降低。理论上,BPSK与2ASK信号形式相似,但基带信号不同。BPSK信号功率谱仅含连续谱,且其频谱特性与2ASK相近。系统采用Verilog实现,包括调制、加噪、解调及误码统计等功能,通过改变`i_SNR`值可调整SNR进行测试。
本仿真展示了基于GoogLeNet的人员行为检测系统在Matlab 2022a上的实现效果,无水印。GoogLeNet采用创新的Inception模块,高效地提取视频中人员行为特征并进行分类。核心程序循环读取视频帧,每十帧执行一次分类,最终输出最频繁的行为类别如“乐队”、“乒乓球”等。此技术适用于智能监控等多个领域。
本仿真展示了使用MATLAB 2022a实现的Q-Learning路径规划算法。通过与环境交互,智能体学习从起点至终点的最佳路径。Q-Learning采用off-policy学习方式,直接学习最优策略;而SARSA为on-policy方法,依据当前策略选择动作。仿真结果显示智能体逐步优化路径并减少步数,最终实现高效导航。核心代码片段实现了Q表更新、奖励计算及路径可视化等功能。
本系统基于FSK调制解调,通过Vivado 2019.2仿真验证了不同信噪比(SNR)下的误码率表现。加入高斯信道与误码统计模块后,仿真结果显示:SNR=16dB时误码极少;随SNR下降至0dB,误码逐渐增多。FSK利用频率变化传输信息,因其易于实现且抗干扰性强,在中低速通信中有广泛应用。2FSK信号由连续谱与离散谱构成,相位连续与否影响功率谱密度衰减特性。Verilog代码实现了FSK调制、加性高斯白噪声信道及解调功能,并计算误码数量。
基于强化学习的倒立摆平衡控制系统利用MATLAB 2022a实现无水印仿真。此系统通过学习策略使摆维持垂直平衡。强化学习涉及状态(如角度和速度)、动作(施力)、奖励(反馈)及策略(选择动作)。采用Q-Learning算法更新动作价值函数Q(s,a),并通过DQN处理高维状态空间,利用经验回放和固定Q-targets提高学习效率和稳定性。
升级版FPGA MSK调制解调系统集成AWGN信道模型,支持在Vivado 2019.2中设置不同SNR仿真误码率。示例SNR值从0到15,结果展示解调质量随SNR提升。MATLAB仿真验证了MSK性能,图片显示了仿真结果。 ### 理论概要 研究聚焦于软件无线电中的MSK调制解调,利用Verilog实现。MSK是一种相位连续、恒包络的二进制调制技术,优点包括频谱效率高。系统采用无核设计,关键模块包括调制器、解调器和误码检测。复位、输入数据、中频信号等关键信号通过Verilog描述,并通过Chipscope在线观察。
**MATLAB 2022a仿真实现Q-learning控制小车弧线行驶,展示学习过程及奖励变化。Q-learning是无模型强化学习算法,学习最优策略以稳定行驶。环境建模为二维平面,状态包括位置、朝向,动作涵盖转向、速度。奖励函数鼓励保持在轨迹上,用贝尔曼方程更新Q表。MATLAB代码动态显示轨迹及奖励随训练改善。**
在MATLAB 2022a中应用遗传算法进行无线通信优化,无水印仿真展示了算法性能。遗传算法源于Holland的理论,用于全局优化,常见于参数估计,如Okumura-Hata模型的传播损耗参数。该模型适用于150 MHz至1500 MHz的频段。算法流程包括选择、交叉、变异等步骤。MATLAB代码执行迭代,计算目标值,更新种群,并计算均方根误差(RMSE)以评估拟合质量。最终结果比较了优化前后的RMSE并显示了SNR估计值。
**MATLAB2022a模拟展示了遗传算法在AWGN信道中估计SNR的效能。该算法利用生物进化原理全局寻优,解决通信系统中复杂环境下的SNR估计问题。核心代码执行多代选择、重组和突变操作,逐步优化SNR估计。结果以图形形式对比了真实SNR与估计值,并显示了均方根误差(RMSE),体现了算法的准确性。**
**摘要:** 在MATLAB 2022a中,基于GoogLeNet的运动识别系统展示优秀性能。GoogLeNet,又称Inception网络,通过结合不同尺寸卷积核的Inception模块实现深度和宽度扩展,有效识别复杂视觉模式。系统流程包括数据预处理、特征提取(前端层学习基础特征,深层学习运动模式)、池化、Dropout及全连接层分类。MATLAB程序示例展示了选择图像、预处理后进行分类的交互过程。当按下按钮,图像被读取、调整大小并输入网络,最终通过classify函数得到预测标签。
**摘要:** 升级版MATLAB仿真对比了深度学习与LS、MMSE、LMMSE的OFDM信道估计算法,新增自动样本生成、复杂度分析及抗频偏性能评估。深度学习在无线通信中,尤其在OFDM的信道估计问题上展现潜力,解决了传统方法的局限。程序涉及信道估计器设计,深度学习模型通过学习导频信息估计信道响应,适应频域变化。核心代码展示了信号处理流程,包括编码、调制、信道模拟、降噪、信道估计和解调。
在MATLAB 2022a中,使用GoogLeNet对卫星遥感图像进行轮船检测,展示了高效的目标识别。GoogLeNet的Inception架构结合全局平均池化增强模型泛化性。核心代码将图像切块并分类,预测为轮船的部分被突出显示,体现了深度学习在复杂场景检测中的应用。
在MATLAB 2022a中,应用PSO优化的LSTM模型提升了电力负荷预测效果。优化前预测波动大,优化后预测更稳定。PSO借鉴群体智能,寻找LSTM超参数(如学习率、隐藏层大小)的最优组合,以最小化误差。LSTM通过门控机制处理序列数据。代码显示了模型训练、预测及误差可视化过程。经过优化,模型性能得到改善。
在MATLAB 2022a中模拟的Q-learning倒立摆控制显示出稳定平衡效果。Q-learning算法通过智能体与环境交互学习最佳控制策略,以维持摆杆直立。算法基于状态s和动作a更新Q值表,目标是最大化未来奖励。系统状态包括小车位置、速度、杆角度及角速度。动作是小车加速度。当状态或动作空间大时,用神经网络近似Q函数,DQN通过经验回放和目标网络稳定学习。核心代码涉及状态更新、贪婪策略选择动作及环境反馈,实时更新摆杆和小车位置。
摘要: 在MATLAB 2022a中,对比了电力负荷预测算法优化前后的效果。优化前为"Ttttttt111222",优化后为"Tttttttt333444",明显改进体现为"Tttttttttt5555"。该算法结合了粒子群优化(PSO)和长门控循环单元(GRU)网络,利用PSO优化GRU的超参数,提升预测准确性和稳定性。PSO模仿鸟群行为寻找最优解,而GRU通过更新门和重置门处理长期依赖问题。核心MATLAB程序展示了训练和预测过程,包括使用'adam'优化器和超参数调整,最终评估并保存预测结果。
在Vivado 2019.2平台上开发的系统,展示了数字低通滤波器和频谱分析的FPGA实现。仿真结果显示滤波效果良好,与MATLAB仿真结果一致。设计基于FPGA的FIR滤波器,利用并行处理和流水线技术提高效率。频谱分析通过离散傅里叶变换实现。提供了Verilog核心程序以示例模块工作原理。
MATLAB2022a仿真实现了Offset Min-Sum (OMS)译码算法与粒子群优化(PSO)结合,以优化偏移参数,提升LDPC码解码性能。PSO通过迭代寻找最小化误码率(BER)的最佳偏移量。核心程序运用PSO进行参数更新和适应度函数(BER)评估,最终在不同信噪比下展示OMS解码性能,并保存结果。
MATLAB2022a仿真实现了基于遗传优化的NMS LDPC译码算法,优化归一化参数以提升纠错性能。NMS算法通过迭代处理低密度校验码,而PSO算法用于寻找最佳归一化因子。程序包含粒子群优化的迭代过程,根据误码率评估性能并更新解码参数。最终,展示了迭代次数与优化过程的关系,并绘制了SNR与误码率曲线。
MATLAB 2022a中实现了Q-Learning算法的仿真,展示了一种在动态环境中进行路线规划和避障的策略。Q-Learning是强化学习的无模型方法,通过学习动作价值函数Q(s,a)来优化智能体的行为。在路线问题中,状态表示智能体位置,动作包括移动方向。通过正负奖励机制,智能体学会避开障碍物并趋向目标。MATLAB代码创建了Q表,设置了学习率和ε-贪心策略,并训练智能体直至达到特定平均奖励阈值。
在MATLAB 2022a中,一个基于遗传算法优化的GRU网络展示显著优化效果。优化前后的电力负荷预测图表显示了改进的预测准确性和效率。GRU,作为RNN的一种形式,解决了长期依赖问题,而遗传算法用于优化其超参数,如学习率和隐藏层单元数。核心MATLAB程序执行超过30分钟,通过迭代和适应度评估寻找最佳超参数,最终构建优化的GRU模型进行负荷预测,结果显示预测误差和模型性能的提升。
MATLAB 2022a仿真实现了LDPC码的性能分析,展示了不同码长对纠错能力的影响。短码长LDPC码收敛快但纠错能力有限,长码长则提供更强纠错能力但易陷入局部最优。核心代码通过循环进行误码率仿真,根据EsN0计算误比特率,并保存不同码长(12-768)的结果数据。
MATLAB 2022a仿真实现了Q-Learning算法在路线规划与避障中的应用,展示了智能体在动态环境中学习最优路径的过程。Q-Learning通过学习动作价值函数Q(s,a)来最大化长期奖励,状态s和动作a分别代表智能体的位置和移动方向。核心程序包括迭代选择最优动作、更新Q矩阵及奖励机制(正奖励鼓励向目标移动,负奖励避开障碍,探索奖励平衡探索与利用)。最终,智能体能在复杂环境中找到安全高效的路径,体现了强化学习在自主导航的潜力。
MATLAB2022a仿真实现了遗传优化的LDPC码OSD译码算法,通过自动搜索最佳偏移参数ΔΔ以提升纠错性能。该算法结合了低密度奇偶校验码和有序统计译码理论,利用遗传算法进行全局优化,避免手动调整,提高译码效率。核心程序包括编码、调制、AWGN信道模拟及软输入软输出译码等步骤,通过仿真曲线展示了不同SNR下的误码率性能。
MATLAB 2022a仿真实现了遗传优化的归一化最小和(NMS)译码算法,应用于低密度奇偶校验(LDPC)码。结果显示了遗传优化的迭代过程和误码率对比。遗传算法通过选择、交叉和变异操作寻找最佳归一化因子,以提升NMS译码性能。核心程序包括迭代优化、目标函数计算及性能绘图。最终,展示了SNR与误码率的关系,并保存了关键数据。
该内容包括三部分:1) 展示了Vivado 2019.2和Matlab中关于某种算法的仿真结果图像,可能与太阳能光伏系统的最大功率点跟踪(MPPT)相关。2) 简述了MPPT中的爬山法原理,通过调整光伏电池工作点以找到最大功率输出。3) 提供了一个Verilog程序模块`MPPT_test_tops`,用于测试MPPT算法,其中包含`UI_test`和`MPPT_module_U`两个子模块,处理光伏电流和电压信号。
MATLAB 2022a仿真实现了Q-Learning算法在迷宫路线规划中的应用,展示多幅模拟结果图。Q-Learning是无模型强化学习算法,通过迭代更新动作价值函数寻找最优策略。在迷宫问题中,代理通过ε-greedy策略平衡探索与利用。MATLAB核心程序遍历状态空间,更新Q表,直至找到终点。
MATLAB 2022a中展示了YOLOv2算法的螺丝检测仿真结果,该系统基于深度学习的YOLOv2网络,有效检测和定位图像中的螺丝。YOLOv2通过批标准化、高分辨率分类器等优化实现速度和精度提升。核心代码部分涉及设置训练和测试数据,调整图像大小,加载预训练模型,构建YOLOv2网络并进行训练,最终保存检测器模型。
MATLAB 2022a仿真实现了根升余弦滤波器(RRC)的效果,该滤波器常用于通信系统以消除码间干扰。RRC滤波器设计考虑了时偏影响,其脉冲响应由理想矩形脉冲卷积得到,滚降系数控制衰减速度。在有同步误差时,滤波器需保持良好ISI抑制能力。MATLAB代码展示了计算时偏量并应用RRC滤波于连续样本的过程,以降低误码率并优化系统性能。
在Vivado 2019.2中进行的LDPC码仿真展示了算法的良好效果。LDPC码是一种1962年由Gallager提出的稀疏校验矩阵线性分组码,利用Tanner图表示编码解码结构。CCSDS标准定义的LDPC(1024,512)码具有准循环结构,适用于空间通信,其编码通过填充信息比特和校验节点的线性组合实现。Verilog代码示例展示了TEST_encoder_top模块,用于控制LDPC编码过程,包括时钟、复位信号处理和中间数据读取。
MATLAB 2022a仿真实现了LDPC译码算法比较,包括Sum-Product (SP),Min-Sum (MS),Normalized Min-Sum (NMS)和Offset Min-Sum (OMS)。四种算法在不同通信场景有各自优势:SP最准确但计算复杂度高;MS计算复杂度最低但性能略逊;NMS通过归一化提升低SNR性能;OMS引入偏置优化高SNR表现。适用于资源有限或高性能需求的场景。提供的MATLAB代码用于仿真并绘制不同SNR下的误码率曲线。
MATLAB 2022a中展示了YOLOv2目标检测算法的仿真结果,包括多张检测图像。YOLOv2是实时检测算法,由卷积层和全连接层构成,输出张量包含边界框坐标和类别概率。损失函数由三部分组成。程序使用75%的数据进行训练,剩余25%作为测试集。通过ResNet-50预训练模型构建YOLOv2网络,并用SGDM优化器进行训练。训练完成后,保存模型为`model.mat`。
使用Vivado 2019.2仿真的DDS信号发生器展示了正弦、方波、锯齿波和三角波的输出,并能调整幅度和频率。DDS技术基于高速累加器、查找表和DAC,通过频率控制字和初始相位调整产生各种波形。Verilog程序提供了一个TEST模块,包含时钟、复位、信号选择、幅度和频率控制输入,以生成不同波形。
MATLAB 2022a中使用YOLOv2算法对avi视频进行人体喝水行为检测,结果显示成功检测到目标。该算法基于全卷积网络,通过特征提取、锚框和损失函数优化实现。程序首先打乱并分割数据集,利用预训练的ResNet-50和YOLOv2网络结构进行训练,最后保存模型。
MATLAB 2022a中展示了基于深度学习的QPSK调制解调系统频偏估计和补偿算法仿真结果。该算法运用神经网络模型实时估计并补偿无线通信中的频率偏移。QPSK调制将二进制信息映射到四个相位状态,解调通常采用相干解调。深度学习算法通过预处理、网络结构设计、损失函数选择和优化算法实现频偏估计。核心程序生成不同SNR下的信号,比较了有无频偏补偿的误码率,显示了补偿效果。
本文介绍了使用VIVADO 2019.2仿真的多通道FIR滤波器设计。展示了系统RTL结构图,并简述了FIR滤波器的基本理论,包括单通道和多通道的概念、常见结构及设计方法,如窗函数法、频率采样法、优化算法和机器学习方法。此外,还提供了Verilog核心程序代码,用于实现4通道滤波器模块,包含时钟、复位信号及输入输出接口的定义。