作为一名长期关注人工智能发展的技术博主摘星,我深刻感受到当前AI领域正处于一个前所未有的变革时期。从ChatGPT的横空出世到各类智能体(Intelligent Agents)的蓬勃发展,我们正站在通用人工智能(AGI, Artificial General Intelligence)的门槛上。在过去的几年里,我见证了AI技术从单一任务的专用系统向多模态、多任务的智能体系统演进,这种演进不仅仅是技术层面的突破,更是对人工智能本质理解的深化。智能体作为AGI实现的重要载体,其发展轨迹清晰地勾勒出了通向AGI的技术路径。当前的技术局限性主要体现在推理能力的不足、知识整合的困难、以及缺乏真正的自主学
作为一名深耕人工智能领域多年的技术研究者,我深深感受到智能体(Agent)技术正在成为AI发展的关键转折点。从早期基于规则的专家系统,到如今融合大语言模型的智能代理,我们见证了决策机制从简单条件判断向复杂推理规划的演进历程。
在我的研究实践中,智能体决策机制的核心挑战始终围绕着如何在动态环境中做出最优决策。传统的决策树和状态机虽然逻辑清晰,但面对复杂多变的现实场景时显得力不从心。而随着GPT-4、Claude等大语言模型的兴起,我们迎来了前所未有的机遇——通过自然语言推理和规划,智能体可以展现出接近人类水平的决策能力。
当前主流的决策框架中,ReAct(Reasoning and Acting