暂无个人介绍
内容摘要特征工程是指将原始数据标记处理为价值密度更高,更容易解释目标问题的工程化过程,在面向大量原始采集的数据集统计分析,尤其是对于高通量持续采集、且价值密度较低的时序数据更是如此。时序数据特征工程则是指利用有效方法,将原始时序数据转化为带有含义分类标签的序列数据片段或特征数值,例如,我们可以将指定时间窗口序列数据标识为特定异常关联数据,并保留平均、最大、最小值作为该序列的特征值。这样我们就可以围
随着市场对时序数据采集、存储、管理和分析的需求快速增加,时序数据库领域也在随之快速演进。本文深入浅出地介绍了时序数据库现状、产品、技术和场景需求全景,旨在为智能互联系统设计开发人员、数据存储和分析技术人员提供相对全面的时序数据库选择应用、架构设计和特性规划参考。
随着市场对时序数据采集、存储、管理和分析的需求快速增加,时序数据库领域也在随之快速演进。本文深入浅出地介绍了时序数据库现状、产品、技术和场景需求全景,旨在为智能互联系统设计开发人员、数据存储和分析技术人员提供相对全面的时序数据库选择应用、架构设计和特性规划参考。
随着市场对时序数据采集、存储、管理和分析的需求快速增加,时序数据库领域也在随之快速演进。本文深入浅出地介绍了时序数据库现状、产品、技术和场景需求全景,旨在为智能互联系统设计开发人员、数据存储和分析技术人员提供相对全面的时序数据库选择应用、架构设计和特性规划参考。
随着市场对时序数据采集、存储、管理和分析的需求快速增加,时序数据库领域也在随之快速演进。本文深入浅出地介绍了时序数据库现状、产品、技术和场景需求全景,旨在为智能互联系统设计开发人员、数据存储和分析技术人员提供相对全面的时序数据库选择应用、架构设计和特性规划参考。
5G、物联网等信息技术演进发展正在推动传统制造业快速数字化升级,拥有超连接、超感知、数字化和物联网数字生态系统的制造业企业将在未来竞争中占据绝对优势,而以信息技术 (IT) 与运营技术 (OT)云端融合为基础的工业数据云平台将成为制造业数字化转型升级的关键支撑。本文围绕工业物联网平台建设核心数据采集、融合存储、分析问题,介绍了阿里云Lindorm与Intel、OSIsoft面向工业物联网信息经济(Infonomics)的IT & OT超融合工业数据云解决方案,旨在为制造业企业提供可落地的云端存储分析离散、流程工业泛数据源的能力的实践参考。方案通过云端打通阿里云、Intel的IT技术积累和OSI
目前,物联网、工业互联网、车联网等智能互联技术在各个行业场景下快速普及应用,导致联网传感器、智能设备数量急剧增加,随之而来的海量时序监控数据存储、处理问题,也为时序数据库高效压缩、存储数据能力提出了更高的要求。对于通量愈加庞大的物联网时序大数据存储,尽管标准压缩方法还能发挥其价值,但某些场景对时序数据压缩解压技术效率、性能提出了新的需求。本文介绍了现有的时序数据压缩解压技术,分类介绍了不同算法的特点和优劣势。