算法金_个人页

个人头像照片 算法金
个人头像照片
42
0
0

个人介绍

暂无个人介绍

擅长的技术

获得更多能力
通用技术能力:

暂时未有相关通用技术能力~

云产品技术能力:

暂时未有相关云产品技术能力~

阿里云技能认证

详细说明
暂无更多信息

2024年07月

  • 07.16 23:51:08
    发表了文章 2024-07-16 23:51:08

    算法金 | 这绝对是不一样的,独一无二的逻辑回归算法体验

    算法导师“算法金”分享了更新的AI课件,邀请读者找错并提建议,采纳者可免费参与其付费专栏内测并获赠两份成品。文中提供了多张相关图片,但未直接展示具体内容。读者可通过链接参与互动,助力完善内容。
  • 07.15 23:27:58
    发表了文章 2024-07-15 23:27:58

    算法金 | 秒懂 AI - 深度学习五大模型:RNN、CNN、Transformer、BERT、GPT 简介

    **RNN**,1986年提出,用于序列数据,如语言模型和语音识别,但原始模型有梯度消失问题。**LSTM**和**GRU**通过门控解决了此问题。 **CNN**,1989年引入,擅长图像处理,卷积层和池化层提取特征,经典应用包括图像分类和物体检测,如LeNet-5。 **Transformer**,2017年由Google推出,自注意力机制实现并行计算,优化了NLP效率,如机器翻译。 **BERT**,2018年Google的双向预训练模型,通过掩码语言模型改进上下文理解,适用于问答和文本分类。
  • 07.14 23:13:42
    发表了文章 2024-07-14 23:13:42

    算法金 | 深度学习图像增强方法总结

    **图像增强技术概括** 图像增强聚焦于提升视觉效果和细节,广泛应用于医学、遥感等领域。空间域增强包括直方图均衡化(增强对比度)、对比度拉伸、灰度变换、平滑滤波(均值、中值)和锐化滤波(拉普拉斯、高通)。频率域增强利用傅里叶变换、小波变换,通过高频和低频滤波增强图像特征。现代方法涉及超分辨率重建、深度学习去噪(如CNN、Autoencoder)、图像修复(如GAN)和GANs驱动的多种图像处理任务。
  • 07.11 23:23:18
    发表了文章 2024-07-11 23:23:18

    算法金 | 来了,pandas 2.0

    **Pandas 2.0** 强化了数据分析能力,引入了Apache Arrow支持,提供高效内存管理和速度提升。新特性包括:使用**Arrow Array**进行列式存储,优化内存使用和访问;统一**pd.NA**处理空值,简化缺失值操作;性能增强的**groupby**和**merge**;更好的类型提示支持;以及可扩展接口,允许自定义聚合函数和数据处理方法。这些改进使Pandas在处理大规模数据时更加高效和灵活。
  • 07.10 23:50:28
    发表了文章 2024-07-10 23:50:28

    算法金 | DL 骚操作扫盲,神经网络设计与选择、参数初始化与优化、学习率调整与正则化、Loss Function、Bad Gradient

    **神经网络与AI学习概览** - 探讨神经网络设计,包括MLP、RNN、CNN,激活函数如ReLU,以及隐藏层设计,强调网络结构与任务匹配。 - 参数初始化与优化涉及Xavier/He初始化,权重和偏置初始化,优化算法如SGD、Adam,针对不同场景选择。 - 学习率调整与正则化,如动态学习率、L1/L2正则化、早停法和Dropout,以改善训练和泛化。
  • 07.09 23:48:55
    发表了文章 2024-07-09 23:48:55

    算法金 | 最难的来了:超参数网格搜索、贝叶斯优化、遗传算法、模型特异化、Hyperopt、Optuna、多目标优化、异步并行优化

    机器学习中的超参数调优是提升模型性能的关键步骤,包括网格搜索、随机搜索、贝叶斯优化和遗传算法等方法。网格搜索通过穷举所有可能的超参数组合找到最优,但计算成本高;随机搜索则在预设范围内随机采样,降低计算成本;贝叶斯优化使用代理模型智能选择超参数,效率高且适应性强;遗传算法模拟生物进化,全局搜索能力强。此外,还有多目标优化、异步并行优化等高级技术,以及Hyperopt、Optuna等优化库来提升调优效率。实践中,应结合模型类型、数据规模和计算资源选择合适的调优策略。
  • 07.07 23:25:54
    发表了文章 2024-07-07 23:25:54

    算法金 | 推导式、生成器、向量化、map、filter、reduce、itertools,再见 for 循环

    这篇内容介绍了编程中避免使用 for 循环的一些方法,特别是针对 Python 语言。它强调了 for 循环在处理大数据或复杂逻辑时可能导致的性能、可读性和复杂度问题。
  • 07.06 23:57:31
    发表了文章 2024-07-06 23:57:31

    算法金 | 一个强大的算法模型,GPR !!

    高斯过程回归(GPR)是基于高斯过程的非参数贝叶斯方法,用于捕捉数据的非线性关系并提供不确定性估计。它利用核函数描述输入数据的潜在函数,如径向基函数(RBF)用于平滑建模。GPR通过最大化对数似然函数选择超参数。代码示例展示了如何使用`sklearn`库进行GPR,生成模拟数据,训练模型,并用RBF核函数进行预测,最后通过绘图展示预测结果及置信区间。
  • 07.05 23:49:48
    发表了文章 2024-07-05 23:49:48

    算法金 | 平均数、众数、中位数、极差、方差,标准差、频数、频率 一“统”江湖

    **统计学江湖概要** - **平均数(均值)**:数字的总和除以数量,代表集中趋势,如分赃时平均分配。 - **众数**:出现次数最多的数字,反映了最常见的值,如同一招式被频繁使用。 - **中位数**:排序后位于中间的值,反映数据的中心位置,如同武者武功的中等水平。 - **极差**:最大值减最小值,表示数据波动范围,类似武功最高与最低的差距。 - **方差**:衡量数据波动性,计算每个数值与均值差的平方和的平均数。 - **标准差**:方差的平方根,同单位的波动度量。 - **频数**:某个值出现的次数,如统计武器使用情况。 - **频率**:频数与总次数的比例,显示出现的相对频率。
  • 07.04 23:50:05
    发表了文章 2024-07-04 23:50:05

    算法金 | 我最常用的两个数据可视化软件,强烈推荐

    **算法金**分享数据可视化利器——Tableau与Python的Matplotlib。Tableau,BI界的精英,提供直观拖放界面,快速生成美观图表;Matplotlib,Python绘图库鼻祖,支持复杂图形定制,广泛应用于科学可视化。文中通过趋势图、频数图、结构图、分布图、相关图等多种图表实例,展示了两者在洞察数据、揭示模式和关系方面的强大功能。无论新手还是老将,都能借助这些工具提升数据分析和展示的技艺。
  • 07.03 23:54:31
    发表了文章 2024-07-03 23:54:31

    算法金 | 致敬深度学习三巨头:不愧是腾讯,LeNet问的巨细。。。

    **LeNet 摘要** - LeNet 是 Yann LeCun 在 1989 年提出的卷积神经网络,用于手写数字识别,是深度学习和计算机视觉的里程碑。 - 网络结构包括卷积层(C1, C3, C5)、池化层(S2, S4)和全连接层(F6),处理 32x32 灰度图像,最终分类为 10 类。 - 卷积层提取特征,池化层降低维度,全连接层负责分类。激活函数主要使用 Sigmoid。 - LeNet 在 MNIST 数据集上表现优秀,但现代网络常使用 ReLU 激活和更深结构。 - LeNet 的局限性包括网络较浅、Sigmoid 梯度消失问题和平均池化,但其创新为后续 CNN 发展铺平道路
  • 07.03 00:07:49
    发表了文章 2024-07-03 00:07:49

    算法金 | 欧氏距离算法、余弦相似度、汉明、曼哈顿、切比雪夫、闵可夫斯基、雅卡尔指数、半正矢、Sørensen-Dice

    **摘要:** 了解9种距离和相似度算法:欧氏距离、余弦相似度、汉明距离、曼哈顿距离、切比雪夫距离、闵可夫斯基距离、雅卡尔指数、半正矢距离和Sørensen-Dice系数。这些算法在机器学习、文本分析、图像处理和生物学等领域各有应用。例如,欧氏距离用于KNN和K-Means,余弦相似度用于文本相似性,汉明距离在错误检测中,曼哈顿距离在数据挖掘,切比雪夫距离在棋盘游戏,闵可夫斯基距离通过调整参数适应不同场景,雅卡尔指数和Sørensen-Dice系数用于集合相似度。每种算法有其优缺点,如欧氏距离对异常值敏感,余弦相似度忽略数值大小,汉明距离仅适用于等长数据。
  • 07.01 22:58:38
    发表了文章 2024-07-01 22:58:38

    算法金 | Transformer,一个神奇的算法模型!!

    **Transformer 模型的核心是自注意力机制,它改善了长序列理解,让每个单词能“注意”到其他单词。自注意力通过查询、键和值向量计算注意力得分,多头注意力允许并行处理多种关系。残差连接和层归一化加速训练并提升模型稳定性。该机制广泛应用于NLP和图像处理,如机器翻译和图像分类。通过预训练模型微调和正则化技术可进一步优化。**
  • 07.01 00:00:54
    发表了文章 2024-07-01 00:00:54

    算法金 | 线性回归:不能忽视的五个问题

    **线性回归理论基于最小二乘法和特定假设,如线性关系、同方差性等。多重共线性指自变量间高度相关,影响模型稳定性及系数解释。自相关性是观测值间的关联,违反独立性假设,影响模型预测。异方差性是误差项方差随自变量变化,导致参数估计失真。训练数据与测试数据分布不一致会降低模型泛化能力。检测和处理这些问题涉及VIF、自相关图、变换、加权最小二乘法等方法。**

2024年06月

  • 06.29 23:49:13
    发表了文章 2024-06-29 23:49:13

    算法金 | 协方差、方差、标准差、协方差矩阵

    **摘要:** 本文介绍了统计学中的基础概念,包括方差、标准差、协方差及其矩阵。方差衡量数据的分散程度,标准差是方差的平方根,提供相同单位下的波动度量。协方差则分析两个变量的关联性,正负值表示正负相关。协方差矩阵扩展到多变量情况,展示多个变量间的关系。这些工具在金融、质量控制、机器学习等领域有广泛应用。文章通过实例和公式清晰解释了每个概念,并强调理解它们之间的关系对于数据分析和统计建模的重要性。
  • 06.28 23:47:31
    发表了文章 2024-06-28 23:47:31

    超强,必会的机器学习评估指标

    ```markdown # 机器学习模型评估指标概览 机器学习模型评估涉及多种指标,用于量化模型在分类和回归任务中的表现。关键指标包括: - **分类**: - **准确率**: 简单易懂,但在类别不平衡时可能误导。 - **精确率**: 衡量正类预测的准确性,适用于误报代价高的场景。 - **召回率**: 评估正类识别的完整性,适用于漏报代价高的场景。 - **F1分数**: 精确率和召回率的调和平均,平衡两者。 - **AUC**: 衡量模型区分正负类的能力,适用于不平衡数据。 - **混淆矩阵**: 提供详细分类结果,用于分析模型错误。
  • 06.27 23:07:16
    发表了文章 2024-06-27 23:07:16

    算法金 | 没有思考过 Embedding,不足以谈 AI

    **摘要:** 本文深入探讨了人工智能中的Embedding技术,解释了它是如何将高维数据映射到低维向量空间以简化处理和捕获内在关系的。文章介绍了词向量、图像嵌入和用户嵌入等常见类型的Embedding,并强调了其在自然语言处理、计算机视觉和推荐系统中的应用。此外,还讨论了Embedding的数学基础,如向量空间和线性代数,并提到了Word2Vec、GloVe和BERT等经典模型。最后,文章涵盖了如何选择合适的Embedding技术,以及在资源有限时的考虑因素。通过理解Embedding,读者能够更好地掌握AI的精髓。
  • 06.26 23:59:17
    发表了文章 2024-06-26 23:59:17

    资深博导:我以为数据预处理是常识,直到遇到自己的学生

    **摘要:** 本文介绍如何使用Python对近红外光谱土壤数据进行预处理,包括MSC(多元散射校正)、SNV(标准正规化变换)、光谱微分、基线校正和去趋势。通过代码示例展示了预处理步骤,以及每种方法前后的光谱对比。预处理旨在减少噪音、消除散射效应、基线漂移和趋势,提高数据质量和可比性,以利于后续的分析和建模。每部分都配有图表,显示了处理前后的光谱变化。
  • 06.25 23:53:24
    发表了文章 2024-06-25 23:53:24

    算法金 | 决策树、随机森林、bagging、boosting、Adaboost、GBDT、XGBoost 算法大全

    **摘要:** 这篇文章介绍了决策树作为一种机器学习算法,用于分类和回归问题,通过一系列特征测试将复杂决策过程简化。文章详细阐述了决策树的定义、构建方法、剪枝优化技术,以及优缺点。接着,文章讨论了集成学习,包括Bagging、Boosting和随机森林等方法,解释了它们的工作原理、优缺点以及如何通过结合多个模型提高性能和泛化能力。文中特别提到了随机森林和GBDT(XGBoost)作为集成方法的实例,强调了它们在处理复杂数据和防止过拟合方面的优势。最后,文章提供了选择集成学习算法的指南,考虑了数据特性、模型性能、计算资源和过拟合风险等因素。
  • 06.24 23:25:26
    发表了文章 2024-06-24 23:25:26

    算法金 | 使用随机森林获取特征重要性

    **随机森林算法简介**:集成多个决策树提升性能,常用于各类任务。在葡萄酒分类项目中,使用`RandomForestClassifier`实现模型,100棵树,得分100%。特征重要性显示了哪些化学成分影响最大。通过特征选择保持高准确性,证明了有效特征选择的重要性。7个关键特征中脯氨酸和酒精含量最重要。简洁高效,适用于特征工程。[链接指向知识星球]
  • 06.23 23:44:08
    发表了文章 2024-06-23 23:44:08

    算法金 | K-均值、层次、DBSCAN聚类方法解析

    **摘要:** 这篇文章介绍了聚类分析的基本概念和几种主要的聚类算法。聚类是无监督学习中用于发现数据内在结构的技术,常用于市场分析、图像分割等场景。K-均值是一种基于划分的算法,简单高效但易受初始值影响;层次聚类包括凝聚和分裂方式,形成层次结构但计算复杂;DBSCAN基于密度,能处理任意形状的簇,但参数选择敏感。文章还讨论了这些算法的优缺点和适用场景,并提供了相关资源链接和Python实现。
  • 06.22 22:27:07
    发表了文章 2024-06-22 22:27:07

    算法金 | 统计学的回归和机器学习中的回归有什么差别?

    **摘要:** 统计学回归重在解释,使用线性模型分析小数据集,强调假设检验与解释性。机器学习回归目标预测,处理大数据集,模型复杂多样,关注泛化能力和预测误差。两者在假设、模型、数据量和评估标准上有显著差异,分别适用于解释性研究和预测任务。
  • 06.21 23:28:13
    发表了文章 2024-06-21 23:28:13

    算法金 | 奇奇怪怪的正则化

    **摘要:** 本文深入浅出地介绍了正则化在机器学习中的作用,旨在防止过拟合,提高模型泛化能力。正则化通过添加惩罚项限制模型复杂度,包括L1(Lasso回归,产生稀疏解)、L2(Ridge回归,减少参数大小)、Elastic Net(结合L1和L2优点)以及Lp正则化等。其他方法如Early Stopping、Dropout和数据增强也是防止过拟合的有效手段。选择正则化方法要考虑数据特性、模型复杂性、计算资源和调参能力。正则化参数设置可通过交叉验证、网格搜索等方法优化。文章最后强调了正则化对控制模型复杂度和提升性能的重要性。
  • 06.20 23:00:47
    发表了文章 2024-06-20 23:00:47

    审稿人:拜托,请把模型时间序列去趋势!!

    **时间序列去趋势概述** 时间序列分析中,去趋势是关键步骤,旨在消除长期变化模式以便更好地分析数据。趋势可以上升、下降或平稳。常用去趋势方法包括移动平均、差分和多项式拟合。移动平均通过计算窗口内平均值平滑数据;差分通过相邻点差值去除趋势;多项式拟合通过拟合函数描述并减去趋势。去趋势后数据更平稳,便于预测和决策。实际应用如股票市场、气象和经济指标分析。在处理时需注意数据周期性、过度拟合和预处理。
  • 06.19 23:03:26
    发表了文章 2024-06-19 23:03:26

    算法金 | 再见!!!梯度下降(多图)

    **梯度下降及其优化算法简述** 梯度下降是一种优化算法,广泛用于机器学习和深度学习,通过迭代更新模型参数以最小化损失函数。它有几种变体,包括批梯度下降(使用全部数据)、随机梯度下降(单个样本)和小批量梯度下降(小批量样本)。每种形式在计算效率和稳定性上各有优劣。
  • 06.18 23:12:28
    发表了文章 2024-06-18 23:12:28

    算法金 | 一个强大的算法模型:t-SNE !!

    **t-SNE算法简介** t-SNE(t-Distributed Stochastic Neighbor Embedding)是一种非线性降维技术,用于高维数据的可视化和结构保留。它通过保持高维数据点间的局部相似性来创建低维表示,尤其适用于揭示复杂数据集的模式。算法的关键在于使用高斯分布计算高维相似性,而用t分布计算低维相似性,并通过最小化Kullback-Leibler散度来优化低维空间的位置。t-SNE在图像、文本和生物信息学等领域有广泛应用,但计算复杂度高,不适合大规模数据。
  • 06.17 21:32:27
    发表了文章 2024-06-17 21:32:27

    李沐:用随机梯度下降来优化人生!

    **摘要:** 了解吴恩达提到的机器学习六大核心算法之一——优化算法,特别是梯度下降。梯度下降是常用于降低模型损失函数的优化方法,适用于线性回归、逻辑回归及神经网络。尽管简单易用,但它依赖初始值且可能陷入局部最优。为改善这些问题,发展出了如动量法、Adagrad、Adam等优化算法。梯度下降在神经网络训练中扮演关键角色,涉及前向传播、反向传播和参数更新。它有批梯度、随机梯度和小批量梯度等变体,其中随机梯度下降在处理大规模数据时效率高,但可能收敛不稳定。生活中的问题也可借鉴随机梯度下降的思想,通过设定目标、持续努力、适应变化和合理休息来优化人生路径。
  • 06.16 16:43:04
    发表了文章 2024-06-16 16:43:04

    算法金 | 一文看懂人工智能、机器学习、深度学习是什么、有什么区别!

    **摘要:** 了解AI、ML和DL的旅程。AI是模拟人类智能的科学,ML是其分支,让机器从数据中学习。DL是ML的深化,利用多层神经网络处理复杂数据。AI应用广泛,包括医疗诊断、金融服务、自动驾驶等。ML助力个性化推荐和疾病预测。DL推动计算机视觉和自然语言处理的进步。从基础到实践,这些技术正改变我们的生活。想要深入学习,可参考《人工智能:一种现代的方法》和《深度学习》。一起探索智能的乐趣!
  • 06.15 22:58:56
    发表了文章 2024-06-15 22:58:56

    算法金 | 选择最佳机器学习模型的 10 步指南

    许多刚入门的学习者也面临着相似的挑战,特别是在项目启动初期的方向确定和结构规划上。本文意在提供一份全面指南,助你以正确的方法开展项目。 遵循本文提供的每一步至关重要(虽有少数例外)。就像不做饭或点餐就无法享用美食一样,不亲自动手构建模型,就无法实现模型部署。
  • 06.14 22:29:33
    发表了文章 2024-06-14 22:29:33

    算法金 | 再见!!!K-means

    **k-means 算法的简要总结:** - **k-means** 是一种非监督学习的聚类算法,用于将数据分为 k 个类别。 - **工作流程** 包括初始化 k 个中心点,分配数据点到最近的中心,更新中心点,然后迭代直到中心点稳定或达到最大迭代次数。 - **优点** 包括简单易懂、计算效率高,适合大规模数据,结果直观。 - **缺点** 包括需要预设 k 值,对初始中心点敏感,假设簇是凸形,受异常值影响大。
  • 06.13 23:07:42
    发表了文章 2024-06-13 23:07:42

    算法金 | 一个强大的算法模型,GP !!

    高斯过程是一种非参数机器学习方法,利用高斯分布描述数据,并通过核函数衡量相似性。它在小样本和不确定性估计上有优势,常用于回归、分类和优化。高斯过程基于函数分布,通过核函数(如线性、RBF、多项式)捕捉数据关系。与传统方法相比,它在处理不确定性和非线性问题时更具灵活性。虽然计算复杂度高、内存需求大,但通过稀疏高斯过程等方法可改善。高斯过程还可扩展到非平稳和多任务场景。本文通过代码示例展示了高斯过程在战斗胜率预测中的应用。
  • 06.12 23:18:06
    发表了文章 2024-06-12 23:18:06

    算法金 | 一个强大的算法模型,多项式回归!!

    ```markdown # 多项式回归简述 - 多项式回归是线性回归扩展,用于处理非线性关系。 - 通过添加高次项来拟合复杂模式,但可能引发过拟合。 - 示例中展示了如何用Python创建模拟数据,使用`PolynomialFeatures`生成多项式特征,训练线性回归模型并可视化结果。 - 优点:灵活捕捉非线性关系,易于理解。 - 缺点:易过拟合,计算复杂度高。 - 相关概念:正则化(岭回归、Lasso回归)及其他非线性模型(如支持向量回归)。 - 注意事项:选择合适阶数,避免过拟合,重视数据预处理和模型评估。 ```
  • 06.11 23:31:00
    发表了文章 2024-06-11 23:31:00

    算法金 | 一文彻底理解机器学习 ROC-AUC 指标

    ```markdown # ROC曲线与AUC详解:评估分类模型利器 本文深入浅出解释ROC曲线和AUC,通过实例和代码帮助理解其在模型评估中的重要性,旨在提升对分类模型性能的理解和应用。 ```
  • 06.11 23:30:14
    发表了文章 2024-06-11 23:30:14

    算法金 | D3blocks,一个超酷的 Python 库

    D3Blocks是一个基于d3.js的Python图形库,用于创建吸引人的数据可视化图表,如D3graph、Elasticgraph和Sankey图。拥有超过470个Star,其特点包括简易性、功能丰富、易用性、可定制性和及时更新。通过pip安装后,用户能轻松创建粒子图和其他图表。文中展示了实战应用,如能源数据集的网络图,通过调整节点和边的属性实现个性化展示。关注作者,享受智能乐趣。
  • 06.10 13:10:26
    发表了文章 2024-06-10 13:10:26

    算法金 | AI 基石,无处不在的朴素贝叶斯算法

    ```markdown 探索贝叶斯定理:从默默无闻到AI基石。18世纪数学家贝叶斯的理论,初期未受重视,后成为20世纪机器学习、医学诊断和金融分析等领域关键。贝叶斯定理是智能背后的逻辑,朴素贝叶斯分类器在文本分类等应用中表现出色。贝叶斯网络则用于表示变量间条件依赖,常见于医学诊断和故障检测。贝叶斯推理通过更新信念以适应新证据,广泛应用于统计和AI。尽管有计算复杂性等局限,贝叶斯算法在小数据集和高不确定性场景中仍极具价值。了解并掌握这一算法,助你笑傲智能江湖! ```
  • 06.09 23:59:35
    发表了文章 2024-06-09 23:59:35

    算法金 | 只需十四步:从零开始掌握Python机器学习(附资源)

    ```markdown ## 摘要 全网同名「算法金」的作者分享了一篇针对Python机器学习入门的教程。教程旨在帮助零基础学习者掌握Python和机器学习,利用免费资源成为实践者。内容分为基础篇和进阶篇,覆盖Python基础、机器学习概念、数据预处理、科学计算库(如NumPy、Pandas和Matplotlib)以及深度学习(TensorFlow、Keras)。此外,还包括进阶算法如SVM、随机森林和神经网络。教程还强调了实践和理解最新趋势的重要性。
  • 06.09 23:55:10
    发表了文章 2024-06-09 23:55:10

    算法金 | 自动帮你完成物体检测标注?这个工具你必须了解一下

    Auto-Annotate是一款基于半监督学习的自动图像标注工具,旨在简化对象检测任务中的标注工作。利用少量标注数据,该工具能为大规模图像数据集生成标签,提高效率。支持自定义置信度阈值,适用于多类别检测和模型原型开发。通过pip安装,命令行或Python代码调用。虽然不能完全替代手动标注,但能有效减少标注量,适用于持续学习和模型更新。工具使用涉及模型选择、参数配置,如置信度阈值的调整,以平衡准确性和覆盖率。
  • 06.08 23:41:52
    发表了文章 2024-06-08 23:41:52

    算法金 | 让数据讲故事:数据可视化的艺术与科学,几乎是每个领域都需要掌握的技能

    本文探讨了数据可视化的重要性,强调了其在决策中的作用。数据可视化应清晰传达信息,避免误导,如错误的颜色对比、过多数据、省略基线、偏见性文字和不合适图表类型。建议使用高对比色,限制图表数据量,正确选择图表类型,并注意相关性与因果的区分。此外,要警惕3D图形的误解和过度展示信息。好的可视化能提升决策效率。
  • 06.08 23:14:50
    发表了文章 2024-06-08 23:14:50

    算法金 | LSTM 原作者带队,一个强大的算法模型杀回来了

    **摘要:** 本文介绍了LSTM(长短期记忆网络)的发展背景和重要性,以及其创始人Sepp Hochreiter新推出的xLSTM。LSTM是为解决传统RNN长期依赖问题而设计的,广泛应用于NLP和时间序列预测。文章详细阐述了LSTM的基本概念、核心原理、实现方法和实际应用案例,包括文本生成和时间序列预测。此外,还讨论了LSTM与Transformer的竞争格局。最后,鼓励读者深入学习和探索AI领域。
  • 06.07 22:37:26
    发表了文章 2024-06-07 22:37:26

    算法金 | 不愧是腾讯,问基础巨细节 。。。

    **摘要:** 本文介绍了Adaboost算法的基本概念、工作原理和数学基础,它是由 Freund 和 Schapire 在 1996 年提出的迭代机器学习算法,通过组合多个弱分类器形成强分类器。Adaboost 通过调整样本权重,重点关注被错误分类的样本,以提高分类性能。文章还提供了代码示例,展示了如何使用决策树作为弱分类器,并在鸢尾花数据集上应用 Adaboost 分类器。此外,还讨论了Adaboost的优缺点及适用场景,强调其在分类问题上的高效性和广泛应用。
  • 06.07 22:34:46
    发表了文章 2024-06-07 22:34:46

    算法金 | 这次终于能把张量(Tensor)搞清楚了!

    本文是关于PyTorch中张量(Tensor)的入门教程,由全网同名\[算法金\]作者撰写。文章介绍了张量的基础概念,强调其在深度学习中的核心地位,并阐述了张量与向量、矩阵的关系。接着,详细讲解了如何在PyTorch中创建和操作张量,包括张量的数学运算、广播机制、索引切片以及变形与重塑。此外,还涉及张量的高级功能,如自动求导系统和高级数学函数。最后,文章提到了张量在深度学习中的应用、性能优化技巧和调试方法,鼓励读者通过实践提升技能。
  • 06.06 11:27:10
    发表了文章 2024-06-06 11:27:10

    算法金 | 吴恩达:机器学习的六个核心算法!

    吴恩达教授在《The Batch》周报中介绍了机器学习领域的六个基础算法:线性回归、逻辑回归、梯度下降、神经网络、决策树和k均值聚类。这些算法是现代AI的基石,涵盖了从简单的统计建模到复杂的深度学习。线性回归用于连续变量预测,逻辑回归用于二分类,梯度下降用于优化模型参数,神经网络处理非线性关系,决策树提供直观的分类规则,而k均值聚类则用于无监督学习中的数据分组。这些算法各有优缺点,广泛应用于经济学、金融、医学、市场营销等多个领域。通过不断学习和实践,我们可以更好地掌握这些工具,发掘智能的乐趣。
  • 发表了文章 2024-07-17

    算法金 | 这绝对是不一样的,独一无二的逻辑回归算法体验

  • 发表了文章 2024-07-15

    算法金 | 秒懂 AI - 深度学习五大模型:RNN、CNN、Transformer、BERT、GPT 简介

  • 发表了文章 2024-07-14

    算法金 | 深度学习图像增强方法总结

  • 发表了文章 2024-07-11

    算法金 | 来了,pandas 2.0

  • 发表了文章 2024-07-11

    算法金 | DL 骚操作扫盲,神经网络设计与选择、参数初始化与优化、学习率调整与正则化、Loss Function、Bad Gradient

  • 发表了文章 2024-07-10

    算法金 | 最难的来了:超参数网格搜索、贝叶斯优化、遗传算法、模型特异化、Hyperopt、Optuna、多目标优化、异步并行优化

  • 发表了文章 2024-07-07

    算法金 | 推导式、生成器、向量化、map、filter、reduce、itertools,再见 for 循环

  • 发表了文章 2024-07-07

    算法金 | 一个强大的算法模型,GPR !!

  • 发表了文章 2024-07-06

    算法金 | 平均数、众数、中位数、极差、方差,标准差、频数、频率 一“统”江湖

  • 发表了文章 2024-07-05

    算法金 | 我最常用的两个数据可视化软件,强烈推荐

  • 发表了文章 2024-07-04

    算法金 | 致敬深度学习三巨头:不愧是腾讯,LeNet问的巨细。。。

  • 发表了文章 2024-07-03

    算法金 | 欧氏距离算法、余弦相似度、汉明、曼哈顿、切比雪夫、闵可夫斯基、雅卡尔指数、半正矢、Sørensen-Dice

  • 发表了文章 2024-07-01

    算法金 | Transformer,一个神奇的算法模型!!

  • 发表了文章 2024-07-01

    算法金 | 线性回归:不能忽视的五个问题

  • 发表了文章 2024-06-30

    算法金 | 协方差、方差、标准差、协方差矩阵

  • 发表了文章 2024-06-29

    超强,必会的机器学习评估指标

  • 发表了文章 2024-06-27

    算法金 | 没有思考过 Embedding,不足以谈 AI

  • 发表了文章 2024-06-27

    资深博导:我以为数据预处理是常识,直到遇到自己的学生

  • 发表了文章 2024-06-26

    算法金 | 决策树、随机森林、bagging、boosting、Adaboost、GBDT、XGBoost 算法大全

  • 发表了文章 2024-06-24

    算法金 | 使用随机森林获取特征重要性

正在加载, 请稍后...
滑动查看更多
正在加载, 请稍后...
暂无更多信息
正在加载, 请稍后...
暂无更多信息