让全球每一位用户享用极致视频体验!
本文介绍了iPhone Live实况图的格式(.livp)、社交平台图片变糊的原因、图像编码压缩的基本过程(变换、量化、熵编码),以及HEIF格式及其与HEVC的关系。HEIF格式具有体积小、颜色丰富、内容灵活等优势,适用于高效图像存储与传输。
I帧、P帧、B帧是视频编码中的基本概念。I帧是帧内编码帧,无需参考其他帧即可解码;P帧是前向预测编码帧,基于前一帧解码;B帧是双向预测编码帧,基于前后帧解码。IDR帧是一种特殊的I帧,用于即时解码刷新,防止错误传播。GOP(Group of Pictures)是一组连续的画面,第一个帧为I帧,gop_size设置越大,画质越好,但解码延迟增加。OpenGOP允许GOP间的帧依赖,而ClosedGOP则不允许。DTS(解码时间戳)和PTS(显示时间戳)分别用于解码和显示时间控制。
HDR10是通用的HDR标准,无需支付版权费;HDR400、HDR600等是VESA的DisplayHDR等级,根据亮度、色域、色深等指标划分,数值越高代表性能越强,如HDR400要求400nit亮度,HDR600则需600nit以上。
傅里叶变换是一种强大的数学工具,能够将信号在时域与频域之间进行转换,广泛应用于物理学、信号处理、图像处理等领域。它能够将复杂信号分解为多个简单的正弦波,从而便于分析和处理。在图像处理中,傅里叶变换可以用于去噪、锐化和压缩等操作,通过滤波器选择性地保留或去除特定频率的信息,提高图像质量。
超分辨率技术旨在提升图像或视频的清晰度,通过增加单位长度内的采样点数量来提高空间分辨率。基于深度学习的方法,如SRCNN、VDSR、SRResNet等,通过卷积神经网络和残差学习等技术,显著提升了图像重建的质量。此外,基于参考图像的超分辨率技术通过利用高分辨率参考图像,进一步提高了重建图像的真实感和细节。
图像噪声是在图像采集、传输和处理过程中产生的像素值异常现象,主要由光子计数统计、电子偏移和放大器噪声等因素引起。噪声影响图像质量,降低信噪比,使特征难以识别。图像去噪技术包括传统方法(如空间域滤波、频域滤波、图像压缩和超糅合)和基于深度学习的方法(如卷积神经网络、残差网络和生成对抗网络),旨在有效去除噪声,提高图像质量。
视频质量评价指标如PSNR、SSIM和VMAF是衡量画面质量的重要工具,但不应成为视频工作者的唯一目标。微帧致力于优化画质,提升观看体验,强调综合评估指标,以实现最接近人眼主观感受的效果。本文探讨了PSNR avg.MSE与PSNR avg.log的区别,以及VMAF的优势与不足。
HDR(高动态范围)技术通过提供更广阔的亮度范围和丰富的色彩细节,显著提升图像质量,使电影、图片和游戏画面更加逼真。相比SDR,HDR拥有更宽的色域、更高的色深和动态范围,支持多种行业标准如HDR10、Dolby Vision、HDR10+、HLG和HDR Vivid,为用户带来更接近真实的视觉体验。