暂无个人介绍
暂时未有相关通用技术能力~
阿里云技能认证
详细说明SCQL 提供中心化和P2P两种部署架构。中心化依赖第三方的SCDB,各数据方仅需SCQLEngine;P2P模式无第三方,各数据方需SCQLEngine和SCQLBroker。使用流程包括配置、注册、启动和执行查询。P2P部署实践展示详细步骤。[查看部署教程](https://www.secretflow.org.cn/zh-CN/docs/scql/0.5.0b2/intro/p2p-tutorial)。
SCQL是安全协作查询语言,让不信任的多方能在保护隐私的前提下进行联合数据分析。它假设参与者半诚实,支持多方(N>=2)合作,且具备SQL语法支持和性能优化。SCQL提供类似SQL的用户界面,通过CCL机制允许数据所有者控制数据使用权限。系统基于SPU的MPC框架运行,适用于多个应用场景。
隐匿查询(PIR)允许用户在不暴露查询内容的情况下检索服务器数据库。PIR分为单服务器和多服务器方案,以及Index PIR和Keyword PIR两类。隐语目前实现了单服务器的SealPIR(用于Index PIR)和Labeled PSI(用于Keyword PIR)。SealPIR优化点包括:数据打包、查询向量压缩、支持多维和多个查询。未来,隐语PIR的计划包括性能提升、多服务器方案和新算法的探索。
数据
考虑到很多小伙伴可能是初学者之前并没有安装docker 以及docker-compose的经验,本文记录如何在Linux系统上快速的部署docker以及更换国内镜像源。在部署完成以后展示了隐语从源码编译部署以及secretnote的安装,简单快速,非常实用。
隐私求交(Private Set Intersection, PSI)是利用密码学技术在不暴露数据集以外信息的情况下找到两集合的交集。隐语SPU支持三种PSI算法:ECDH(适合小数据集)、KKRT(基于Cuckoo Hashing和OT Extension,适合大数据集)和BC22PCG(使用伪随机相关生成器)。ECDH基于椭圆曲线 Diffie-Hellman,KKRT利用OT Extension实现高效处理,而BC22PCG通过压缩满足特定相关性的随机数减少通信量。此外,还有基于Oblivious Pseudo-Random Function (OPRF)的PSI协议。
SecretFlow 是一个隐私保护的统一框架,用于数据分析和机器学习,支持MPC、HE、TEE等隐私计算技术。它提供设备抽象、计算图表示和基于图的ML/DL能力,适应数据水平、垂直和混合分割场景。产品层包括SecretPad(快速体验核心能力)和SecretNote(开发工具)。算法层涉及PSI、PIR、数据分析和联邦学习(水平、垂直、混合)。此外,SecretFlow还有YACL密码库和Kusica任务调度框架,Kusica提供轻量化部署、跨域通信和统一API接口。