暂无个人介绍
YOLOv11改进策略【Backbone/主干网络】| 替换骨干网络为:Swin Transformer,提高多尺度特征提取能力
YOLOv11改进策略【Backbone/主干网络】| CVPR 2024替换骨干网络为 UniRepLKNet,解决大核 ConvNets 难题
YOLOv11改进策略【Conv和Transformer】| 上下文转换器CoT 结合静态和动态上下文信息的注意力机制 (含二次创新C3k2)
YOLOv11改进策略【模型轻量化】| MoblieNetV3:基于搜索技术和新颖架构设计的轻量型网络模型
YOLOv11改进策略【Backbone/主干网络】| CVPR 2024 替换骨干网络为 RMT,增强空间信息的感知能力
YOLOv11改进策略【YOLO和Mamba】| 2024 VM-UNet,高效的特征提取模块VSS block 二次创新提高精度
YOLOv11改进策略【YOLO和Mamba】| 替换骨干 Mamba-YOLOv11-B !!! 最新的发文热点
YOLOv11改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 GhostNet V1 基于 Ghost Module 和 Ghost Bottlenecks的轻量化网络结构
YOLOv11改进策略【Conv和Transformer】| ECCV-2024 Histogram Transformer 直方图自注意力 适用于噪声大,图像质量低的检测任务
YOLOv11改进策略【Backbone/主干网络】| ICLR-2023 替换骨干网络为:RevCol 一种新型神经网络设计范式
YOLOv11改进策略【模型轻量化】| 使用 MoblieOne 模块,引入结构重参数化,提高模型检测效率
YOLOv11改进策略【Backbone/主干网络】| 替换骨干网络为2023-CVPR ConvNeXt V2 (附网络详解和完整配置步骤)
YOLOv11改进策略【YOLO和Mamba】| 替换骨干 Mamba-YOLOv11-T !!! 最新的发文热点
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 MobileViTv1高效的信息编码与融合模块,获取局部和全局信息
YOLOv11改进策略【Conv和Transformer】| CVPR-2024 Single-Head Self-Attention 单头自注意力
YOLOv11改进策略【模型轻量化】| 替换骨干网络 CVPR-2024 StarNet,超级精简高效的轻量化模块
YOLOv11改进策略【Backbone/主干网络】| 2023 U-Net V2 替换骨干网络,加强细节特征的提取和融合
YOLOv11改进策略【模型轻量化】| 替换骨干网络 CVPR-2024 RepViT 轻量级的Vision Transformers架构
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 ICCV 2023的EfficientViT 用于高分辨率密集预测的多尺度线性关注
YOLOv11改进策略【YOLO和Mamba】| 替换骨干 Mamba-YOLOv11-L !!! 最新的发文热点
YOLOv11改进策略【卷积层】| GnConv:一种通过门控卷积和递归设计来实现高效、可扩展、平移等变的高阶空间交互操作
YOLOv11改进策略【卷积层】| RCS-OSA 通道混洗的重参数化卷积 二次创新C3k2
YOLOv11改进策略【卷积层】| CVPR-2023 SCConv 空间和通道重建卷积:即插即用,减少冗余计算并提升特征学习
YOLOv11改进策略【卷积层】| HWD,引入`Haar小波变换`到下采样模块中,减少信息丢失
YOLOv11改进策略【卷积层】| AKConv: 具有任意采样形状和任意参数数量的卷积核
YOLOv11改进策略【卷积层】| CGblock 内容引导网络 利用不同层次信息,提高多类别分类能力 (含二次创新)
YOLOv11改进策略【卷积层】| NeurIPS-2022 ParNet 即插即用模块 二次创新C3k2
YOLOv11改进策略【Conv和Transformer】| CVPR-2021 Bottleneck Transformers 简单且高效的自注意力模块
YOLOv11改进策略【卷积层】| 引入注意力卷积模块RFAConv,关注感受野空间特征 助力yolov11精度提升
YOLOv11改进策略【卷积层】| CVPR-2024 利用DynamicConv 动态卷积 结合C3k2进行二次创新,提高精度
YOLOv11改进策略【卷积层】| SAConv 可切换的空洞卷积 二次创新C3k2
YOLOv11改进策略【卷积层】| ICCV-2023 SAFM 空间自适应特征调制模块 对C3k2进行二次创新
YOLOv11改进策略【卷积层】| 利用MobileNetv4中的UIB、ExtraDW优化C3k2
YOLOv11改进策略【卷积层】| CVPR-2024 PKI Module 获取多尺度纹理特征,适应尺度变化大的目标
YOLOv11改进策略【卷积层】| ICCV-2023 LSK大核选择模块 包含二次独家创新
YOLOv11改进策略【卷积层】| SPD-Conv 针对小目标和低分辨率图像的检测任务
YOLOv11改进策略【卷积层】| ECCV-2024 小波卷积WTConv 增大感受野,降低参数量计算量,独家创新助力涨点
YOLOv11改进策略【卷积层】| 2024最新轻量级自适应提取模块 LAE 即插即用 保留局部信息和全局信息
YOLOv11改进策略【卷积层】| ICCV-2023 引入Dynamic Snake Convolution动态蛇形卷积,改进C3k2
YOLOv11改进策略【卷积层】| CVPR-2021 多样分支块DBB,替换传统下采样Conv 含二次创新C3k2
YOLOv11改进策略【卷积层】| CVPR-2023 部分卷积 PConv 轻量化卷积,降低内存占用
YOLOv11改进策略【SPPF】| NeuralPS-2022 Focal Modulation : 使用焦点调制模块优化空间金字塔池化SPPF
YOLOv11改进策略【SPPF】| SimSPPF,简化设计,提高计算效率
本文探讨了基于AIFI模块的YOLOv11目标检测改进方法。AIFI是RT-DETR中高效混合编码器的一部分,通过在S5特征层上应用单尺度Transformer编码器,减少计算成本并增强概念实体间的联系,从而提升对象定位和识别效果。实验表明,AIFI使模型延迟降低35%,准确性提高0.4%。