暂无个人介绍
RT-DETR改进策略【注意力机制篇】| CVPR2024 CAA上下文锚点注意力机制
RT-DETR改进策略【注意力机制篇】| ICCV2023 聚焦线性注意力模块 Focused Linear Attention 聚焦能力与特征多样性双重提升,含二次创新
RT-DETR改进策略【注意力机制篇】| SENet V2 优化SE注意力机制,聚合通道和全局信息
RT-DETR改进策略【注意力机制篇】| 2024 SCSA-CBAM 空间和通道的协同注意模块(含HGBlock二次创新)
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 GhostNet V3 2024华为的重参数轻量化模型
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV2,含模型详解和完整配置步骤
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v2,加速训练,快速收敛
RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v1 高效的移动倒置瓶颈结构
RT-DETR改进策略【模型轻量化】| PP-LCNet:轻量级的CPU卷积神经网络
RT-DETR改进策略【模型轻量化】| 替换华为的极简主义骨干网络:VanillaNet
RT-DETR改进策略【模型轻量化】| 替换骨干网络 CVPR-2023 FasterNet 高效快速的部分卷积块
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 ICCV 2023的EfficientViT 用于高分辨率密集预测的多尺度线性关注
RT-DETR改进策略【模型轻量化】| 替换骨干网络 CVPR-2024 RepViT 轻量级的Vision Transformers架构
RT-DETR改进策略【RT-DETR和Mamba】| 替换骨干 Mamba-RT-DETR-B !!! 最新的发文热点
RT-DETR改进策略【Conv和Transformer】| 2024 AssemFormer 结合卷积与 Transformer 优势,弥补传统方法不足
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 MobileViTv1高效的信息编码与融合模块,获取局部和全局信息
RT-DETR改进策略【Conv和Transformer】| TPAMI-2024 Conv2Former 利用卷积调制操作和大核卷积简化自注意力机制,提高网络性能
RT-DETR改进策略【模型轻量化】| ShufflenetV2,通过通道划分构建高效网络
RT-DETR改进策略【RT-DETR和Mamba】| MLLA:Mamba-Like Linear Attention,融合Mamba设计优势的注意力机制
RT-DETR改进策略【模型轻量化】| GhostNetV2:利用远距离注意力增强廉价操作
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 GhostNet V1 基于 Ghost Module 和 Ghost Bottlenecks的轻量化网络结构
RT-DETR改进策略【Conv和Transformer】| CVPR-2023 BiFormer 稀疏自注意力,减少内存占用
RT-DETR改进策略【Conv和Transformer】| ECCV-2024 Histogram Transformer 直方图自注意力 适用于噪声大,图像质量低的检测任务
RT-DETR改进策略【模型轻量化】| 替换轻量化骨干网络:ShuffleNet V1
RT-DETR改进策略【模型轻量化】| MoblieNetV3:基于搜索技术和新颖架构设计的轻量型网络模型
RT-DETR改进策略【模型轻量化】| 替换骨干网络 CVPR-2024 StarNet,超级精简高效的轻量化模块
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 2024轻量化网络MoblieNetV4:移动生态系统的通用模型
RT-DETR改进策略【RT-DETR和Mamba】| 替换骨干 Mamba-RT-DETR-L !!! 最新的发文热点
RT-DETR改进策略【Conv和Transformer】| CVPR-2022 Deformable Attention Transformer 可变形注意力 动态关注目标区域
RT-DETR改进策略【Conv和Transformer】| ICCV-2023 iRMB 倒置残差移动块 轻量化的注意力模块
RT-DETR改进策略【Conv和Transformer】| 上下文转换器CoT 结合静态和动态上下文信息的注意力机制 (含二次创新)
RT-DETR改进策略【Conv和Transformer】| GRSL-2024最新模块 卷积和自注意力融合模块 CAFM 减少图像中的噪声干扰
RT-DETR改进策略【Conv和Transformer】| ACmix 卷积和自注意力的结合,充分发挥两者优势
RT-DETR改进策略【Conv和Transformer】| 2023 引入CloFormer中的Clo block 双分支结构,融合高频低频信息(二次创新AIFI)
RT-DETR改进策略【Backbone/主干网络】| CVPR 2024 替换骨干网络为 RMT,增强空间信息的感知能力
RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为CVPR-2024 PKINet 获取多尺度纹理特征,适应尺度变化大的目标
RT-DETR改进策略【Backbone/主干网络】| CVPR 2024替换骨干网络为 UniRepLKNet,解决大核 ConvNets 难题
RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为2023-CVPR ConvNeXt V2 (附网络详解和完整配置步骤)
RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为:Swin Transformer,提高多尺度特征提取能力
RT-DETR改进策略【Backbone/主干网络】| 2023 U-Net V2 替换骨干网络,加强细节特征的提取和融合
RT-DETR改进策略【Backbone/主干网络】| ICLR-2023 替换骨干网络为:RevCol 一种新型神经网络设计范式
RT-DETR改进策略【卷积层】| CVPR-2023 SCConv 空间和通道重建卷积:即插即用,减少冗余计算并提升特征学习
RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为2023-CVPR LSKNet (附网络详解和完整配置步骤)
RT-DETR改进策略【卷积层】| CVPR-2024 PKI Module 获取多尺度纹理特征,适应尺度变化大的目标
RT-DETR改进策略【卷积层】| CVPR-2023 部分卷积 PConv 轻量化卷积,降低内存占用
RT-DETR改进策略【卷积层】| 利用MobileNetv4中的UIB、ExtraDW优化ResNetLayer
RT-DETR改进策略【卷积层】| ICCV-2023 LSK大核选择模块 包含ResNetLayer二次独家创新
RT-DETR改进策略【卷积层】| GnConv:一种通过门控卷积和递归设计来实现高效、可扩展、平移等变的高阶空间交互操作
RT-DETR改进策略【卷积层】| ICCV-2023 引入Dynamic Snake Convolution动态蛇形卷积,改进ResNetLayer