暂无个人介绍
YOLOv9改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
YOLOv8改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
YOLOv10改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
YOLOv11改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
RT-DETR改进策略【Neck】| PRCV 2023,SBA(Selective Boundary Aggregation):特征融合模块,描绘物体轮廓重新校准物体位置,解决边界模糊问题
RT-DETR改进策略【Neck】| BiFPN:双向特征金字塔网络-跨尺度连接和加权特征融合
RT-DETR改进策略【损失函数篇】| NWD损失函数,提高小目标检测精度
RT-DETR改进策略【注意力机制篇】| 添加SE、CBAM、ECA、CA、Swin Transformer等注意力和多头注意力机制
RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v1 高效的移动倒置瓶颈结构
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 MobileViTv1高效的信息编码与融合模块,获取局部和全局信息
RT-DETR改进策略【模型轻量化】| GhostNetV2:利用远距离注意力增强廉价操作
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 GhostNet V1 基于 Ghost Module 和 Ghost Bottlenecks的轻量化网络结构
RT-DETR改进策略【模型轻量化】| 替换骨干网络 CVPR-2024 StarNet,超级精简高效的轻量化模块
RT-DETR改进策略【Backbone/主干网络】| CVPR 2024替换骨干网络为 UniRepLKNet,解决大核 ConvNets 难题
YOLOv11改进策略【小目标改进】| Shape-NWD:融合改进,结合Shape-IoU和NWD 更好地适应小目标特性
YOLOv11改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
YOLOv11改进策略【小目标改进】| 添加专用于小目标的检测层 附YOLOv1~YOLOv11的检测头变化详解
YOLOv11改进策略【Head】| (独家改进)轻量化检测头:利用 EfficientNet 中的移动倒置瓶颈模块 MBConv 改进检测头
YOLOv11改进策略【损失函数篇】| NWD损失函数,提高小目标检测精度
YOLOv11改进策略【小目标改进】| 2024-TOP 自适应阈值焦点损失(ATFL)提升对小目标的检测能力
YOLOv11改进策略【Head】| ASFF 自适应空间特征融合模块,改进检测头Detect_ASFF
YOLOv11改进策略【Neck】| HS-FPN:高级筛选特征融合金字塔,加强细微特征的检测
YOLOv11改进策略【Neck】| BiFPN:双向特征金字塔网络-跨尺度连接和加权特征融合
YOLOv11改进策略【Neck】| GFPN 超越BiFPN 通过跳层连接和跨尺度连接改进v11颈部网络
YOLOv11改进策略【Neck】| 替换RT-DETR中的CCFF跨尺度特征融合颈部结构,优化计算瓶颈与冗余问题
YOLOv11改进策略【Head/分割头】| 结合CVPR-2024 中的DynamicConv 动态卷积 改进分割头, 优化模型(独家改进)
YOLOv11改进策略【Neck】| ArXiv 2023,基于U - Net v2中的的高效特征融合模块:SDI(Semantics and Detail Infusion)
YOLOv11改进策略【Neck】| 使用CARAFE轻量级通用上采样算子
YOLOv11改进策略【Neck】| NeurIPS 2023 融合GOLD-YOLO颈部结构,强化小目标检测能力
YOLOv11改进策略【Head】| 增加针对 大目标 的检测层 (四个检测头)
YOLOv11改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
YOLOv11改进策略【Head】| AFPN渐进式自适应特征金字塔,增加针对小目标的检测头(附模块详解和完整配置步骤)
YOLOv11改进策略【Head】| 引入RT-DETR中的RTDETRDecoder,替换检测头
YOLOv11改进策略【注意力机制篇】| WACV-2024 D-LKA 可变形的大核注意 针对大尺度、不规则的目标图像
YOLOv11改进策略【注意力机制篇】| Large Separable Kernel Attention (LSKA) 大核可分离卷积注意力 二次创新C2PSA、C3k2
YOLOv11改进策略【损失函数篇】| 替换激活函数为Mish、PReLU、Hardswish、LeakyReLU、ReLU6
YOLOv11改进策略【损失函数篇】| WIoU v3:针对低质量样本的边界框回归损失函数
YOLOv11改进策略【损失函数篇】| Shape-IoU:考虑边界框形状和尺度的更精确度量
YOLOv11改进策略【损失函数篇】| 2024 引进Focaler-IoU损失函数 加强边界框回归 (Focaler-DIoU、Focaler-GIoU、Focaler-CIoU)
YOLOv11改进策略【损失函数篇】| Slide Loss,解决简单样本和困难样本之间的不平衡问题
YOLOv11改进策略【损失函数篇】| NWD损失函数,提高小目标检测精度
YOLOv11改进策略【损失函数篇】| 通过辅助边界框计算IoU提升检测效果(Inner_GIoU、Inner_DIoU、Inner_CIoU、Inner_EIoU、Inner_SIoU)
YOLOv11改进策略【损失函数篇】| 引入Soft-NMS,提升密集遮挡场景检测精度,包括GIoU-NMS、DIoU-NMS、CIoU-NMS、SIoU-NMS、 EIou-NMS
YOLOv11改进策略【注意力机制篇】| 引入MobileNetv4中的Mobile MQA,轻量化注意力模块 提高模型效率
YOLOv11改进策略【损失函数篇】| 利用MPDIoU,加强边界框回归的准确性
YOLOv11改进策略【注意力机制篇】| WACV-2021 Triplet Attention 三重注意力模块 - 跨维度交互注意力机制优化
YOLOv11改进策略【注意力机制篇】| CVPR2024 CAA上下文锚点注意力机制
YOLOv11改进策略【注意力机制篇】| EMA注意力 即插即用模块,提高远距离建模依赖
YOLOv11改进策略【注意力机制篇】| GAM全局注意力机制: 保留信息以增强通道与空间的相互作用
YOLOv11改进入门篇 | 手把手讲解改进模块如何实现高效涨点,以SimAM注意力模块为例
你好,我是AI助理
可以解答问题、推荐解决方案等