暂时未有相关云产品技术能力~
better bench 简介:CS博士;研究领域:类脑计算、持续学习、AI、数据挖掘、自然语言处理、数学建模。
本文介绍了2024年“华为杯”中国研究生数学建模竞赛的选题分析,重点讨论了高速公路应急车道启用模型的问题。文章详细描述了如何使用YOLOv5和SORT算法进行车辆检测与跟踪,计算车流密度、流量及速度,并利用随机森林回归预测交通拥堵。此外,还提出了多情景动态分析和虚拟应急车道控制策略,以及优化数据采集点布置的方法。提供了完整的Python代码和B站视频教程链接,帮助读者深入理解并实践该模型。
本文介绍了2024年中国研究生数学建模竞赛C题的详细分析,涵盖数据预处理、特征提取、模型训练及评估等多个方面。通过对磁通密度数据的处理,提取关键特征并应用多种分类算法进行波形分类。此外,还探讨了斯坦麦茨方程及其温度修正模型的应用,分析了温度、励磁波形和磁芯材料对磁芯损耗的影响,并提出了优化磁芯损耗与传输磁能的方法。最后,提供了B站视频教程链接,供进一步学习参考。
2024年中国研究生数学建模竞赛C题聚焦磁性元件磁芯损耗建模。题目背景介绍了电能变换技术的发展与应用,强调磁性元件在功率变换器中的重要性。磁芯损耗受多种因素影响,现有模型难以精确预测。题目要求通过数据分析建立高精度磁芯损耗模型。具体任务包括励磁波形分类、修正斯坦麦茨方程、分析影响因素、构建预测模型及优化设计条件。涉及数据预处理、特征提取、机器学习及优化算法等技术。适合电气、材料、计算机等多个专业学生参与。
2024年中国研究生数学建模竞赛E题要求建立高速公路应急车道紧急启用模型,以缓解特定路段的拥堵问题。题目提供了四个视频观测点的数据,需分析交通流参数随时间的变化规律,建立拥堵预警模型,并验证模型有效性。此外,还需设计合理的应急车道启用规则和算法,优化视频监控点布局,以提升决策科学性和成本效益。涉及视频数据处理、非线性动态系统建模和机器学习等技术。适合交通工程、数学、计算机科学等多个专业学生参与。需利用Python等工具进行数据处理和建模。具体问题包括统计参数变化、建立拥堵模型、验证模型有效性、设计启用规则和优化监控点布局。
2024“华为杯”数学建模竞赛,对ABCDEF每个题进行详细的分析,涵盖风电场功率优化、WLAN网络吞吐量、磁性元件损耗建模、地理环境问题、高速公路应急车道启用和X射线脉冲星建模等多领域问题,解析了问题类型、专业和技能的需要。
本文提供了2024年华数杯全国大学生数学建模竞赛C题“老外游中国”的解题思路分析和Python代码实现,涉及景点评分统计、城市综合评价、游玩路线规划以及特定条件下的旅游优化问题。
本文介绍了增量学习中的三种主要模式:任务增量学习(Task-incremental)、域增量学习(Domain-incremental)和类别增量学习(Class-incremental),它们分别关注任务序列、数据分布变化和类别更新对学习器性能的影响,并列举了每种模式下的代表性数据集。
本文提供了联邦遗忘(Federated Unlearning, FU)领域的全面综述,包括背景概念、动机、挑战、设计指南、评估指标体系,并探讨了FU在隐私保护和安全性方面的应用,以及面临的技术挑战和未来研究方向。
本文提供了机器遗忘的全面定义、问题方程、精确与近似遗忘的概念,并分类总结了机器遗忘方法,讨论了其在联邦学习和终身学习中的应用,提出了未来研究方向,为机器遗忘研究领域奠定了理论基础并指出了实际应用的潜力与挑战。
LwF(Learning without Forgetting)是一种机器学习方法,通过知识蒸馏损失来在训练新任务时保留旧任务的知识,无需旧任务数据,有效解决了神经网络学习新任务时可能发生的灾难性遗忘问题。
RWalk算法是一种增量学习框架,通过结合EWC++和修改版的Path Integral算法,并采用不同的采样策略存储先前任务的代表性子集,以量化和平衡遗忘和固执,实现在学习新任务的同时保留旧任务的知识。
本文介绍了如何通过Zerotier和Parsec软件在五分钟内实现外网对校园或公司内网的远程访问,包括安装软件、配置内网穿透和实现远程控制的详细步骤。
本文是关于2024年江西省研究生数学建模竞赛B题的解题思路,题目要求建立投标数学模型分析招投标机制,并提出优化策略和设计更合理的投标规则体系,以提高中标概率和招投标过程的公平性和效率。
本文综述了机器遗忘的分类、评价指标、应用场景、挑战和未来研究方向,提出了精确遗忘和近似遗忘的概念,并探讨了机器遗忘在模型优化和防御攻击中的应用,同时讨论了分布式学习环境下的遗忘挑战和解决方案。
本文通过思维导图的形式,详细介绍了机器遗忘技术的分类、优缺点、面临的威胁和攻击以及防御机制,并探讨了评估机器遗忘系统有效性的方法,包括精确遗忘和近似遗忘技术,以及在数据隐私保护和法律遵从方面的应用。
本文综述了机器遗忘的解决方案和挑战,全面分类并分析了精确遗忘和近似遗忘方法,探讨了它们在隐私保护、安全性增强、模型适应性提升中的应用,并提出了评价指标和未来研究方向。
本文是关于2024年江西省研究生数学建模竞赛C题的解题分析,题目要求设计聚变反应堆,建立模型分析慢化区/增殖区中温度和中子通量的变化,确定反应堆尺寸以最小化单位电力输出的总成本,并计算相关物理量和分析等离子体的点火要求及稳态运行持续时间。
本文是一篇关于少量样本增量学习(Few-shot Class-Incremental Learning, FSCIL)的综述,提出了一种新的分类方法,将FSCIL分为五个子类别,并提供了广泛的文献回顾和性能评估,讨论了FSCIL的定义、挑战、相关学习问题以及在计算机视觉领域的应用。
本文介绍了2024年泰迪杯B题的解决方案,该题目要求构建基于多模态特征融合的图像文本检索模型和算法,通过深入分析和预处理数据集,构建了OFA、BertCLIP和ChineseCLIP三种多模态特征融合模型,并通过投票融合机制优化检索效果,实验结果表明所提模型在图像与文本检索任务中显著提高了检索准确性和效率。
本文介绍了如何在Windows 11操作系统上,配合CUDA 12.0和RTX4090显卡,通过创建conda环境、安装特定版本的CUDA、cuDNN和TensorFlow 2.10来配置TensorFlow GPU环境,并提供了解决可能遇到的cudnn库文件找不到错误的具体步骤。
本文介绍了突触可塑性中的Hebbian学习规则和STDP(Spike-Timing Dependent Plasticity),两种基于神经元活动调节突触强度的机制,其中Hebbian规则强调同时活动的神经元间的连接增强,而STDP则考虑了脉冲时间差异对突触强度的调节作用。
该博客提供了在服务器上配置Huggingface、安装必要的工具(如git-lfs和huggingface_hub库)、登录Huggingface以及使用git clone命令克隆模型和文件的详细步骤。
本文列举并简要介绍了用于脑研究、脑网络分析和可视化的多种工具箱,如Brain Connectivity Toolbox、bctpy、人类连接组项目等,为神经科学研究者提供了丰富的分析和可视化大脑网络的工具选择。
该博客介绍了几种博士科研中最好用的科研绘图工具,包括ChiPlot、Veusz、Echarts、MeedPeer和Python可视化库,并提供了它们的优缺点分析。
本文探讨了如何提高使用gensim库加载word2vec预训练词向量模型的效率,提出了三种解决方案:保存模型以便快速重新加载、仅保存和加载所需词向量、以及使用Embedding工具库代替word2vec原训练权重。
本文介绍了一种名为"Synaptic Intelligence"(SI)的持续学习方法,通过模拟生物神经网络的智能突触机制,解决了人工神经网络在学习新任务时的灾难性遗忘问题,并保持了计算效率。
本文介绍了如何在Linux系统中使用7zip压缩工具,包括通过brew安装、使用基本命令进行文件压缩、解压、列出存档内容、测试存档完整性以及进行性能基准测试等操作。
本文是关于2024美国大学生数学建模竞赛C题"网球运动中的势头"的完整论文,由一位自称对网球规则和比赛数据非常熟悉的计算机博士撰写,提供了问题分析、数学模型、实现代码和26页的完整论文。
本文提供了一篇25页的中英文论文,针对2024美国大学生数学建模竞赛C题"网球运动中的势头",建立了数学模型来分析网球比赛中势头的形成和影响,并通过Python代码实现了模型的定量分析和可视化,同时对模型的合理性、影响因素、预测方法和战术策略进行了深入探讨。
本文通过MATLAB仿真实现了OFDM系统中BPSK、QPSK、4QAM、16QAM和32QAM调制解调过程,并在加性高斯白噪声信道及TDL瑞利衰落信道下计算了不同信噪比条件下的误比特率。
本文介绍了如何在MacOS系统上安装VOSviewer软件,并以ESN(Echo State Network)网络的研究为例,通过VOSviewer对相关科学文献进行可视化分析,以深入了解ESN在学术研究中的应用和发展情况。
本文介绍了如何使用VOSviewer软件对特定研究方向的领域论文进行可视化分析,以ESN(Echo State Network)网络研究为例,展示了从安装软件、检索文献、导入数据到进行关键词分析、作者分析和引用量分析的完整流程,帮助用户快速了解并深入研究某个学术领域的发展趋势和现状。
本文介绍了基于MATLAB的多模光纤模场分布仿真分析,详细阐述了多模光纤的概念、实现方法、仿真技术,并利用模式耦合方程分析方法,通过理论和仿真模型设计,展示了不同模式下的光场分布及其受光纤参数影响的分析结果。
本文提供了关于如何判断期刊类别、影响因子,识别顶级会议,以及在期刊内部进行检索的科研技巧,并探讨了AI技术在撰写综述和制作PPT方面的应用。
本文详细介绍了回声状态网络(Echo State Networks, ESN)的基本概念、优点、缺点、储层计算范式,并提供了ESN的Python代码实现,包括不考虑和考虑超参数的两种ESN实现方式,以及使用ESN进行时间序列预测的示例。
本文提供了2024年全年的数学建模和大数据竞赛时间表,列出了32个重要竞赛的报名时间、比赛时间、费用及报名地址等详细信息。
本文介绍了2023年中国高校大数据挑战赛赛题B的Python实现方法,该赛题涉及DNA存储技术中的序列聚类与比对问题,包括错误率分析、序列聚类、拷贝数分布图的绘制以及比对模型的开发。
本文提出了一个基于动态规划的蔬菜补货和定价策略,通过分析蔬菜品类间销售量的分布规律和相互关系,利用多元回归、随机森林、灰色预测等方法预测市场需求,并建立数学模型以最大化商超收益。
本文在2023年第十三届APMCM亚太地区大学生数学建模竞赛中针对中国新能源电动汽车的发展趋势进行深入研究,建立了多元线性回归、时间序列和机理模型,分析了影响因素、预测了未来发展趋势,并探讨了对全球汽车产业及生态环境的影响,提供了相应的政策分析和市民宣传信。
本文介绍了2023年第十三届APMCM亚太地区大学生数学建模竞赛A题的Python代码实现,详细阐述了水果采摘机器人图像识别问题的分析与解决策略,包括图像特征提取、数学模型建立、目标检测算法使用,以及苹果数量统计、位置估计、成熟度评估和质量估计等任务的编程实践。
本文提供了2023年MathorCup大数据竞赛B题的电商零售商家需求预测及库存优化问题的Python代码解析,涉及数据预处理、特征工程、时间序列预测、聚类分析以及模型预测性能评价等步骤。
本文介绍了一种名为弹性权重合并(EWC)的方法,用于解决神经网络在学习新任务时遭受的灾难性遗忘问题,通过选择性地降低对旧任务重要权重的更新速度,成功地在多个任务上保持了高性能,且实验结果表明EWC在连续学习环境中的有效性。
本文介绍了2023年高教社杯数学建模竞赛A题的定日镜场优化设计问题,涉及问题分析和数学模型构建,旨在提高太阳能光热发电效率并实现电力系统的新能源转型。
本文介绍了2023年高教社杯数学建模竞赛C题,涉及蔬菜类商品的自动定价与补货决策,包括问题分析、数学模型的构建以及Python代码实现,旨在优化商超的补货和定价策略以提高收益。
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
本文通过收集390名3至12个月婴儿及其母亲的相关数据,运用结构方程模型、相关性分析和多种机器学习模型,研究了母亲身心健康对婴儿行为特征和睡眠质量的影响,并提出了改善母婴交互质量和提高婴儿睡眠质量的解决方案。
本文介绍了如何通过观察均值和方差的变化、ADF单位根检验、KPSS检验以及差分操作来判定时间序列数据是否为平稳或非平稳,并提供了Python代码示例进行实际检验。
本文介绍了2023年华数杯全国大学生数学建模竞赛C题的Python代码实现,探讨母亲身心健康对婴儿成长的影响,包括建立数学模型研究母亲身体和心理指标与婴儿行为特征和睡眠质量的关系,以及通过优化模型分析治疗费用与母亲心理健康状况的关系。
本文介绍了2023年第二届钉钉杯大学生大数据挑战赛初赛A题的Python代码分析,涉及智能手机用户监测数据分析中的聚类分析和APP使用情况的分类与回归问题。
本文总结了在源码安装openssl过程中遇到的一些问题及其解决方法,包括缺少libssl.so.1.1库文件、缺少Perl模块以及权限不足时如何指定安装目录等问题。