暂时未有相关云产品技术能力~
better bench 简介:CS博士;研究领域:类脑计算、持续学习、AI、数据挖掘、自然语言处理、数学建模。
本文介绍了2024年“华为杯”中国研究生数学建模竞赛的选题分析,重点讨论了高速公路应急车道启用模型的问题。文章详细描述了如何使用YOLOv5和SORT算法进行车辆检测与跟踪,计算车流密度、流量及速度,并利用随机森林回归预测交通拥堵。此外,还提出了多情景动态分析和虚拟应急车道控制策略,以及优化数据采集点布置的方法。提供了完整的Python代码和B站视频教程链接,帮助读者深入理解并实践该模型。
本文介绍了2024年中国研究生数学建模竞赛C题的详细分析,涵盖数据预处理、特征提取、模型训练及评估等多个方面。通过对磁通密度数据的处理,提取关键特征并应用多种分类算法进行波形分类。此外,还探讨了斯坦麦茨方程及其温度修正模型的应用,分析了温度、励磁波形和磁芯材料对磁芯损耗的影响,并提出了优化磁芯损耗与传输磁能的方法。最后,提供了B站视频教程链接,供进一步学习参考。
2024年中国研究生数学建模竞赛C题聚焦磁性元件磁芯损耗建模。题目背景介绍了电能变换技术的发展与应用,强调磁性元件在功率变换器中的重要性。磁芯损耗受多种因素影响,现有模型难以精确预测。题目要求通过数据分析建立高精度磁芯损耗模型。具体任务包括励磁波形分类、修正斯坦麦茨方程、分析影响因素、构建预测模型及优化设计条件。涉及数据预处理、特征提取、机器学习及优化算法等技术。适合电气、材料、计算机等多个专业学生参与。
2024年中国研究生数学建模竞赛E题要求建立高速公路应急车道紧急启用模型,以缓解特定路段的拥堵问题。题目提供了四个视频观测点的数据,需分析交通流参数随时间的变化规律,建立拥堵预警模型,并验证模型有效性。此外,还需设计合理的应急车道启用规则和算法,优化视频监控点布局,以提升决策科学性和成本效益。涉及视频数据处理、非线性动态系统建模和机器学习等技术。适合交通工程、数学、计算机科学等多个专业学生参与。需利用Python等工具进行数据处理和建模。具体问题包括统计参数变化、建立拥堵模型、验证模型有效性、设计启用规则和优化监控点布局。
2024“华为杯”数学建模竞赛,对ABCDEF每个题进行详细的分析,涵盖风电场功率优化、WLAN网络吞吐量、磁性元件损耗建模、地理环境问题、高速公路应急车道启用和X射线脉冲星建模等多领域问题,解析了问题类型、专业和技能的需要。
通过阿里云的一键部署功能,轻松创建函数计算服务以处理多媒体文件。首先选择地域并配置资源栈名称及其他必要参数,如登录凭证、实例类型及数据库配置。过程中可能需开通相关服务如消息服务MNS,并确保账户有足够的余额。完成配置后,系统自动创建资源栈。当状态显示“创建成功”即部署完毕。最后,通过提供的URL及凭据访问应用,上传PPTX文件进行处理,并下载处理后的结果。
本文提供了2024年华数杯全国大学生数学建模竞赛C题“老外游中国”的解题思路分析和Python代码实现,涉及景点评分统计、城市综合评价、游玩路线规划以及特定条件下的旅游优化问题。
本文介绍了增量学习中的三种主要模式:任务增量学习(Task-incremental)、域增量学习(Domain-incremental)和类别增量学习(Class-incremental),它们分别关注任务序列、数据分布变化和类别更新对学习器性能的影响,并列举了每种模式下的代表性数据集。
本文提供了联邦遗忘(Federated Unlearning, FU)领域的全面综述,包括背景概念、动机、挑战、设计指南、评估指标体系,并探讨了FU在隐私保护和安全性方面的应用,以及面临的技术挑战和未来研究方向。
本文提供了机器遗忘的全面定义、问题方程、精确与近似遗忘的概念,并分类总结了机器遗忘方法,讨论了其在联邦学习和终身学习中的应用,提出了未来研究方向,为机器遗忘研究领域奠定了理论基础并指出了实际应用的潜力与挑战。
LwF(Learning without Forgetting)是一种机器学习方法,通过知识蒸馏损失来在训练新任务时保留旧任务的知识,无需旧任务数据,有效解决了神经网络学习新任务时可能发生的灾难性遗忘问题。
本文综述了机器遗忘技术及其面临的新兴隐私风险,提出了面向数据和模型的分类法,分析了信息窃取和模型破坏攻击手段,探讨了相应的防御策略,并讨论了机器遗忘技术在大型语言模型、联邦学习和异常检测等领域的应用。
本文介绍了一种名为Hard Attention to the Task (HAT)的连续学习算法,通过学习几乎二值的注意力向量来克服灾难性遗忘问题,同时不影响当前任务的学习,并通过实验验证了其在减少遗忘方面的有效性。
本文提出了一种基于任务条件超网络(Hypernetworks)的持续学习模型,通过超网络生成目标网络权重并结合正则化技术减少灾难性遗忘,实现有效的任务顺序学习与长期记忆保持。
RWalk算法是一种增量学习框架,通过结合EWC++和修改版的Path Integral算法,并采用不同的采样策略存储先前任务的代表性子集,以量化和平衡遗忘和固执,实现在学习新任务的同时保留旧任务的知识。
本文介绍了一种名为Dynamically Expandable Network(DEN)的深度神经网络架构,它能够在学习新任务的同时保持对旧任务的记忆,并通过动态扩展网络容量和选择性重训练机制,有效防止语义漂移,实现终身学习。
本文提出了一种名为“Progressive learning”的深度学习框架,通过结合课程选择、渐进式模型容量增长和剪枝机制来解决持续学习问题,有效避免了灾难性遗忘并提高了学习效率。
本文提出了一种名为渐进式神经架构搜索(Progressive Neural Architecture Search, PNAS)的方法,它使用顺序模型优化策略和替代模型来逐步搜索并优化卷积神经网络结构,从而提高了搜索效率并减少了训练成本。
NDSNN(Neurogenesis Dynamics-inspired Spiking Neural Network)是一种受神经发生动态启发的脉冲神经网络训练加速框架,通过动态稀疏性训练和新的丢弃与生长策略,有效减少神经元连接数量,降低训练内存占用并提高效率,同时保持高准确性。
本文介绍了如何通过Zerotier和Parsec软件在五分钟内实现外网对校园或公司内网的远程访问,包括安装软件、配置内网穿透和实现远程控制的详细步骤。
NICE(Neurogenesis Inspired Contextual Encoding)是一种新型深度神经网络架构,旨在通过模拟生物神经系统的成熟过程来解决类别增量学习中的灾难性遗忘问题,无需重放旧样本即可实现有效的增量学习。
本文是关于2024年江西省研究生数学建模竞赛B题的解题思路,题目要求建立投标数学模型分析招投标机制,并提出优化策略和设计更合理的投标规则体系,以提高中标概率和招投标过程的公平性和效率。
本文综述了机器遗忘的分类、评价指标、应用场景、挑战和未来研究方向,提出了精确遗忘和近似遗忘的概念,并探讨了机器遗忘在模型优化和防御攻击中的应用,同时讨论了分布式学习环境下的遗忘挑战和解决方案。
本文通过思维导图的形式,详细介绍了机器遗忘技术的分类、优缺点、面临的威胁和攻击以及防御机制,并探讨了评估机器遗忘系统有效性的方法,包括精确遗忘和近似遗忘技术,以及在数据隐私保护和法律遵从方面的应用。
本文综述了机器遗忘的解决方案和挑战,全面分类并分析了精确遗忘和近似遗忘方法,探讨了它们在隐私保护、安全性增强、模型适应性提升中的应用,并提出了评价指标和未来研究方向。
本文提供了对机器遗忘领域的综合性调查,提出了新的威胁、攻击和防御分类法,深入分析了机器遗忘系统中的安全问题,并探讨了如何利用攻击手段评估遗忘有效性,同时讨论了遗忘作为防御机制的角色以及面临的挑战和未来研究方向。
本文是关于2024年江西省研究生数学建模竞赛C题的解题分析,题目要求设计聚变反应堆,建立模型分析慢化区/增殖区中温度和中子通量的变化,确定反应堆尺寸以最小化单位电力输出的总成本,并计算相关物理量和分析等离子体的点火要求及稳态运行持续时间。
本文是一篇关于少量样本增量学习(Few-shot Class-Incremental Learning, FSCIL)的综述,提出了一种新的分类方法,将FSCIL分为五个子类别,并提供了广泛的文献回顾和性能评估,讨论了FSCIL的定义、挑战、相关学习问题以及在计算机视觉领域的应用。
本文提出了一个整合持续学习、主动学习(active learning)和开放集识别(open set recognition)的统一框架,基于极端值理论(Extreme Value Theory, EVT)的元识别方法,强调了在深度学习时代经常被忽视的从开放集识别中学习识别未知样本的教训和主动学习中的数据查询策略,通过实证研究展示了这种整合方法在减轻灾难性遗忘、数据查询、任务顺序选择以及开放世界应用中的鲁棒性方面的联合改进。
本文提出了一种受大脑启发的神经调节辅助信用分配(NACA)算法,该算法通过模拟大脑中的神经调节机制,有效减轻了人工神经网络(ANNs)和脉冲神经网络(SNNs)在学习过程中的灾难性遗忘问题,并具有较低的计算成本。
本文介绍了FearNet,一种受大脑记忆机制启发的神经网络模型,用于解决增量学习中的灾难性遗忘问题。FearNet不存储先前的例子,而是使用由海马体复合体和内侧前额叶皮层启发的双记忆系统,以及一个受基底外侧杏仁核启发的模块来决定使用哪个记忆系统进行回忆,有效减轻了灾难性遗忘,且在多个数据集上取得了优异的性能。
本文介绍了2024年泰迪杯B题的解决方案,该题目要求构建基于多模态特征融合的图像文本检索模型和算法,通过深入分析和预处理数据集,构建了OFA、BertCLIP和ChineseCLIP三种多模态特征融合模型,并通过投票融合机制优化检索效果,实验结果表明所提模型在图像与文本检索任务中显著提高了检索准确性和效率。
本文介绍了如何在Windows 11操作系统上,配合CUDA 12.0和RTX4090显卡,通过创建conda环境、安装特定版本的CUDA、cuDNN和TensorFlow 2.10来配置TensorFlow GPU环境,并提供了解决可能遇到的cudnn库文件找不到错误的具体步骤。
本文介绍了如何解决在使用tonic库下载DVSGesture数据集时遇到的HTTP Error 403 Forbidden错误,建议从Figshare的链接下载完整数据集并解压到指定目录,以便成功加载数据集进行手势识别研究。
本文介绍了一种受生物学启发的双网络记忆模型,由海马网络和新皮层网络组成,通过模拟海马CA3区的混沌行为和齿状回区的神经元更替,以及新皮层网络中的伪模式学习,有效减少了神经网络在学习新任务时的灾难性遗忘问题。
【8月更文挑战第9天】本文介绍了2024年泰迪杯C题的解决方案,该题目旨在构建一个基于AI的学术论文自动评审模型,通过使用开源大语言模型和自然语言处理技术,自动化地评阅竞赛论文,并根据论文的完整性、实质性工作、摘要质量和写作水平进行打分,最终输出符合特定分布的综合评分结果。
本文介绍了一种名为“记忆感知突触”(Memory Aware Synapses, MAS)的终身学习方法,该方法通过无监督在线评估神经网络参数的重要性,并在新任务学习时对重要参数的更改进行惩罚,有效防止了旧任务知识的覆盖,实现了内存效率和性能提升,同时具有灵活性和通用性。
本文概述了多种人工神经元模型,包括线性神经元、非线性神经元、自适应线性神经元(ADALINE)、感知机神经元、McCulloch-Pitts神经元、径向基函数神经元(RBF)、径向基概率神经元(RBPNN)、模糊神经元、自组织映射神经元(SOM)、CMAC神经元、LIF神经元、Izhikevich神经元、Spiking神经元、Swish神经元和Boltzmann神经元,各自的特点和应用领域,为理解神经网络中神经元的多样性和适应性提供了基础。
本文介绍了渐进式网络(Progressive Neural Networks),一种深度强化学习架构,通过在训练过程中学习预训练模型间的侧向连接实现跨任务知识迁移,有效利用迁移学习优势同时避免灾难性遗忘,并通过强化学习任务验证了架构性能。
本文介绍了突触可塑性中的Hebbian学习规则和STDP(Spike-Timing Dependent Plasticity),两种基于神经元活动调节突触强度的机制,其中Hebbian规则强调同时活动的神经元间的连接增强,而STDP则考虑了脉冲时间差异对突触强度的调节作用。
这篇文章是一篇综述,探讨了深度学习中的模块化概念,包括数据、任务和模型的模块化,并分析了模块化在提高模型设计、解释性、泛化能力等方面的优势和应用。
这篇综述论文探讨了如何将生物学机制整合到人工神经网络中,以提升网络性能,并讨论了这些整合带来的潜在优势和挑战。
该博客展示了如何通过Python预处理神经网络权重矩阵并将其导出为表格,然后使用Chiplot网站来可视化神经网络的神经元节点之间的连接。
本文综述了复杂脑网络中的通信动态,提出了一个将通信动态视为结构连接和功能连接之间必要联系的概念框架,探讨了结构网络的局部和全局拓扑属性如何支持网络通信模式,以及网络拓扑与动态模型之间的相互作用如何提供对大脑信息转换和处理机制的额外洞察。
这篇综述论文深入探讨了神经网络在终身学习领域的研究进展,包括生物学启发的概念、终身学习方法的分类与评估,以及未来研究方向,旨在解决神经网络在学习新任务时如何避免灾难性遗忘的问题。
这篇博客文章总结了连续学习的分类,包括经典方法(重放、正则化和稀疏化方法)和脑启发方法(突触启发、双系统启发、睡眠启发和模块化启发方法),并讨论了它们在解决灾难性遗忘问题上的优势和局限性。
这篇论文提出了一种名为"表示遗忘反学习与参数自共享"(RFU-SS)的新方法,通过双目标优化问题的形式,在减少模型准确性降低的同时,有效地从训练好的机器学习模型中移除特定样本的影响。
本文讨论了在使用embeddings工具包时遇到的“BadZipFile: File is not a zip file”错误,原因是程序中断导致zip文件损坏,解决方法是删除损坏的文件并重新运行程序,具体操作是在Linux系统中删除“~/.embeddings/”目录下的glove文件夹。
本文通过可视化分析,总结了2024年考研国家分数线的变化趋势,指出管理类MBA降低5分,哲学、历史学、理学、医学等10个专业分数线上涨,而经济学等专业出现下降,反映出不同专业分数线受考生数量、竞争情况和政策调整等因素的影响。
本文综述了脑网络通信的概念、模型和应用,将脑网络通信模型分为扩散过程、参数模型和路由协议三大类,并探讨了这些模型在理解大脑功能、健康和疾病方面的应用,同时提出了未来研究方向和使用Brain Connectivity Toolbox等工具箱进行实际研究的指导。