暂时未有相关云产品技术能力~
暂无个人介绍
【10月更文挑战第7天】
【10月更文挑战第6天】
【10月更文挑战第4天】
【10月更文挑战第1天】微服务是一种将大型应用分解为小型、独立服务的设计理念,每个服务负责单一业务功能,独立部署、运行,通过轻量级通信机制(如HTTP API或RPC)互联。相比单体应用,微服务提高了部署效率、团队协作效能和系统可用性,但也增加了系统复杂性、通信开销和数据一致性管理的难度。实现微服务架构涉及服务拆分、服务发现、配置管理、服务治理、数据一致性、安全性、监控与日志、持续集成与部署等多个方面。
【8月更文挑战第20天】
【8月更文挑战第18天】
【8月更文挑战第16天】
【8月更文挑战第14天】
【8月更文挑战第12天】
【8月更文挑战第11天】
【8月更文挑战第10天】
【8月更文挑战第9天】
【8月更文挑战第7天】
【8月更文挑战第5天】
【8月更文挑战第3天】
【8月更文挑战第2天】
【7月更文挑战第21天】
【7月更文挑战第20天】
【7月更文挑战第19天】
【7月更文挑战第18天】
【7月更文挑战第17天】
【7月更文挑战第16天】
【7月更文挑战第14天】
【7月更文挑战第13天】
【7月更文挑战第12天】
【7月更文挑战第11天】分库分表策略涉及数据源、库和表的划分,如订单表可能分布于多层结构中。面试时,主键生成是关键点。自增主键在不分库分表时适用,但在分表场景下会导致冲突。例如,按`buyer_id % 2`分两张表,自增ID无法保证全局唯一。因此,需要全局唯一且能自增的ID,如雪花算法,兼顾性能和高并发需求。
【7月更文挑战第10天】
【7月更文挑战第7天】自增主键优化顺序读:保证数据物理排序,提升范围查询效率。InnoDB引擎中,主键决定数据在页的存储。当插入的数据引起页分裂,如从1、2、3、5、6、7插入4,会导致相邻逻辑页在磁盘上可能分散,影响性能。了解页结构深化数据库知识,面试时可根据情况深入讨论。
【7月更文挑战第6天】
【7月更文挑战第5天】
【7月更文挑战第3天】
【7月更文挑战第2天】MongoDB配置服务器存储分片和权限元数据,支持在主节点故障时保持读服务。关键组件,性能影响显著。复制集包含Primary和Secondary,通过oplog实现数据同步,类似MySQL binlog。oplog的幂等性可能导致大量set操作,且大小受限,可能导致从节点需全量同步。读写分离提升效率,主从切换确保高可用。
【7月更文挑战第1天】
【6月更文挑战第21天】
【6月更文挑战第20天】
【6月更文挑战第19天】面试中,限流阈值设定、触发及恢复策略是关键点。熔断即停止新请求,降级需优先保障核心业务。可通过研发插件或使用网关(如极限网关)实现熔断、限流、降级,但网关可能引入性能损耗。客户端限流也是有效手段,尤其对高压力业务。然而,最佳解决方案仍是针对高并发需求进行扩容。
【6月更文挑战第18天】Redis中的热Key是高访问频率的Key,如QPS高、大带宽使用或CPU密集型操作。热Key可能导致CPU占用过高、访问倾斜、缓存击穿和系统性能下降。爆款商品、热点事件等可引发热Key。检测热Key可借助云服务、`redis-cli hotkeys`、业务层监控或`MONITOR`命令。优化策略包括复制热Key到多分片、采用读写分离,但需权衡代码复杂性和数据一致性。
【6月更文挑战第17天】在面试中讨论Elasticsearch高可用性时,聚焦于分片机制和主从副本,确保数据冗余。Translog作为关键组件,用于数据安全,防止崩溃后丢失。为提升高可用性,实施了额外措施,如限流保护,通过Elasticsearch内置功能或自定义插件监控内存和CPU使用率,当超过阈值时动态限流,以应对突发流量,避免系统崩溃。
【6月更文挑战第15天】Elasticsearch利用Translog确保数据安全,类比MySQL的redo log,它在内存缓冲后记录Translog,每隔5秒持久化磁盘,提供高效且顺序的写入。尽管如此,仍可能最多丢失5秒数据。索引由分片组成,每个分片有主从结构,分布于不同节点以降低故障影响。当主分片失败,主节点会选择新主分片。面试中可讨论公司如何使用Elasticsearch、其性能、索引设计、可用性策略及解决过的挑战。常见问题涉及Elasticsearch的应用场景、问题解决及写入流程。
【6月更文挑战第14天】Redis内置命令如STRLEN、LLEN等用于检测不同类型Key的大小。避免使用DEBUG OBJECT和MEMORY USAGE因高资源消耗。大Key优化包括业务设计避免大Key、数据拆分、更换存储方案、数据压缩和合理清理。清理大Key应选低峰期或分批异步进行,以减少阻塞。使用如HSCAN、SREM等命令避免一次性操作大量数据。
【6月更文挑战第13天】**大Key标准**在不同场景各异,一般string超1MB或容器超10k元素视为大;高并发场景中,string超10KB,容器超5k或整体10MB。**阿里云Redis**中,大Key可能表现为String值5MB,ZSET成员10k,或Hash总值100MB。**大Key影响**包括高读取成本、操作阻塞、存储压力不均。**产生原因**多源于业务设计、动态增长管理和程序错误。**查找大Key**可通过云服务的实时/离线统计,`redis-cli --bigkeys`或使用Redis RDB Tools分析RDB文件。注意,某些特定需求可能需额外工具。
【6月更文挑战第12天】中间件高可用与高性能通过冗余、负载均衡和优化实现。Elasticsearch节点有候选主节点、协调节点和数据节点等角色,可兼任或独立。数据写入涉及Buffer、Page Cache和磁盘,通过段合并优化资源使用。查询通过Commit Point识别新段,确保近实时搜索。
【6月更文挑战第8天】网状模型是层次模型的扩展,允许节点有多重父节点,但导航复杂,需要预知数据库结构。关系模型将数据组织为元组和关系,强调声明式查询,解耦查询语句与执行路径,简化了访问并通过查询优化器提高效率。文档型数据库适合树形结构数据,提供弱模式灵活性,但在Join支持和访问局部性上不如关系型。关系型数据库通过外键和Join处理多对多关系,适合高度关联数据。文档型数据库的模式灵活性体现在schema-on-read,写入时不校验,读取时解析,牺牲性能换取灵活性。适用于不同类型或结构变化的数据场景。
【6月更文挑战第7天】该文探讨数据模型,比较了“多对一”和“多对多”关系。通过使用ID而不是纯文本(如region_id代替"Greater Seattle Area"),可以实现统一、避免歧义、简化修改、支持本地化及优化搜索。在数据库设计中,需权衡冗余和范式。文档型数据库适合一对多但处理多对多复杂,若无Join,需应用程序处理。关系型数据库则通过外键和JOIN处理这些关系。文章还提及文档模型与70年代层次模型的相似性,层次模型以树形结构限制了多对多关系处理。为克服层次模型局限,发展出了关系模型和网状模型。
【6月更文挑战第6天】关系模型是主流数据库模型,以二维表形式展示数据,支持关系算子。分为事务型、分析型和混合型。尽管有其他模型挑战,如网状和层次模型,但关系模型仍占主导。然而,随着大数据增长和NoSQL的出现(如MongoDB、Redis),强调伸缩性、专业化查询和表达力,关系模型的局限性显现。面向对象编程与SQL的不匹配导致“阻抗不匹配”问题,ORM框架缓解但未完全解决。文档模型(如JSON)提供更自然的嵌套结构,适合表示复杂关系,具备模式灵活性和更好的数据局部性。
【6月更文挑战第4天】本文探讨了Twitter面临的一次发推文引发的巨大写入压力问题,指出用户粉丝数分布是决定系统扩展性的关键因素。为解决此问题,Twitter采用混合策略,大部分用户推文扇出至粉丝主页时间线,而少数名人推文则单独处理。性能指标包括吞吐量、响应时间和延迟,其中高百分位响应时间对用户体验至关重要。应对负载的方法分为纵向和横向扩展,以及自动和手动调整。文章强调了可维护性的重要性,包括可操作性、简单性和可演化性,以减轻维护负担和适应变化。此外,良好设计应减少复杂性,提供预测性行为,并支持未来改动。
【6月更文挑战第3天】可扩展性关乎系统应对负载增长的能力,但在产品初期过度设计可能导致失败。理解基本概念以应对可能的负载增长是必要的。衡量负载的关键指标包括日活、请求频率、数据库读写比例等。推特的扩展性挑战在于"扇出",即用户关注网络的广度。两种策略包括拉取(按需查询数据库)和推送(预计算feed流)。推送方法在推特案例中更为有效,因为它减少了高流量时的实时计算压力。
【6月更文挑战第2天】本书探讨现代数据系统,阐述其在信息社会中的关键作用,包括数据库、缓存、搜索引擎、流处理、批处理和消息队列等组成部分。随着技术发展,工具如Kafka、Spark和Redis等多功能组件使得系统设计更为复杂。面对可靠性、可扩展性和可维护性的挑战,书中强调了容错和韧性的重要性,区分了硬件故障、软件错误和人为错误,并提出了应对措施。可靠性关乎用户数据、企业声誉和生存,因此是系统设计的核心考量。
【6月更文挑战第1天】布隆过滤器是一种节省内存的不确定数据结构,用于判断元素是否可能在一个集合中。它由位数组和多个哈希函数组成,能快速插入和查询,但存在误判风险:可能存在假阳性(判断存在但实际不存在),但绝无假阴性(判断不存在则确实不存在)。适用于大规模数据的去重问题,如电话号码判断、安全网站链接检查、黑名单和白名单校验。其工作原理是通过多个哈希函数将元素映射到位数组中,添加时设置相应位置为1,查询时所有位置都为1则可能存在,有0则肯定不存在。由于哈希冲突,可能导致误判,且一旦添加元素无法删除,以避免影响其他元素。
【5月更文挑战第21天】Redis启用多线程后,主线程负责接收事件和命令执行,IO线程处理读写数据。请求处理流程中,主线程接收客户端请求,IO线程读取并解析命令,主线程执行后写回响应。业界普遍认为,除非必要,否则不建议启用多线程模式,因单线程性能已能满足多数需求。公司实际场景中,启用多线程使QPS提升约50%,或选择使用Redis Cluster以提升性能和可用性。