暂时未有相关云产品技术能力~
暂无个人介绍
是在Dropout随机选取节点丢弃的部分上进行优化,即将Dropout随机选取的一组节点变成随机选取多组节点,并计算每组节点的结果和反向传播的损失值。最终,将计算多组的损失值进行平均,得到最终的损失值,并用其更新网络,如图9-19所示。
CORA数据集里面含有每一篇论文的关键词以及分类信息,同时还有论文间互相引用的信息。搭建AI模型,对数据集中的论文信息进行分析,根据已有论文的分类特征,从而预测出未知分类的论文类别。
回归是指一类为一个或多个自变量与因变量之间关系建模的方法。在自然科学和社会科学领域,回归经常用来表示输入和输出之间的关系。 在机器学习领域中的大多数任务通常都与预测(prediction)有关。
图神经网络(Graph Neural Network,GNN)是一类能够从图结构数据中学习特征规律的神经网络,是解决图结构数据(非欧氏空间数据)机器学习问题的最重要的技术之一。
定义两组具有不同分布的模拟数据,使用神经网络的MINE的方法计算两个数据分布之间的互信息
图片搜索器分为图片的特征提取和匹配两部分,其中图片的特征提取是关键。将使用一种基于无监督模型的提取特征的方法实现特征提取,即最大化深度互信息(DeepInfoMax,DIM)方法。
MINE方法中主要使用了两种技术:互信息转为神经网络模型技术和使用对偶KL散度计算损失技术。最有价值的是这两种技术的思想,利用互信息转为神经网络模型技术,可应用到更多的提示结构中,同时损失函数也可以根据具体的任务而使用不同的分布度量算法。
W散度的损失函数GAN-dv模型使用了W散度来替换W距离的计算方式,将原有的真假样本采样操作换为基于分布层面的计算。
搭建条件GAN模型,实现向模型中输入标签,并使其生成与标签类别对应的模拟数据的功能,基于WGAN-gp模型改造实现带有条件的wGAN-gp模型。
使用WGAN-gp模型模拟Fashion-MNIST数据的生成,会使用到WGAN-gp模型、深度卷积GAN(DeepConvolutional GAN,DCGAN)模型、实例归一化技术。
GAN的原理与条件变分自编码神经网络的原理一样。这种做法可以理解为给GAN增加一个条件,让网络学习图片分布时加入标签因素,这样可以按照标签的数值来生成指定的图片。
变分自编码神经网络在变分自编码神经网络基础之上,增加指导性条件。在编码阶段的输入端添加了与标签对应的特征,在解码阶段同样添加标签特征。这样,最终得到的模型将会把输入的标签特征当成原始数据的一部分,实现通过标签来生成可控模拟数据的效果。
为输出分布与标准高斯分布之间的KL散度距离。它与MSE算法一起构成变分自编码神经网络的损失函数。
条件变分自编码神经网络在变分自编码神经网络的基础上只进行了一处改动:在训练测试时,加入一个标签向量((one-hot类型)。
对抗神经网络(如DIM模型)及图神经网络(如DGI模型)中,使用互信息来作为无监督方式提取特征的方法。
掩码模式:是相对于变长的循环序列而言的,如果输入的样本序列长度不同,那么会先对其进行对齐处理(对短序列补0,对长序列截断),再输入模型。这样,模型中的部分样本中就会有大量的零值。为了提升运算性能,需要以掩码的方式将不需要的零值去掉,并保留非零值进行计算,这就是掩码的作用
在pytorch-janet项目中,JANET类的实例化参数与torch.nn.LSTM类完全一致,可以直接替换。如果要将LSTM模型替换成JANET,那么需要如下3步实现。
在实现时,将输入的序列样本拆开,使用循环的方式,将字符逐个输入模型。模型会对每次的输入预测出两个结果,一个是预测字符,另一个是当前的序列状态。
解码错误。‘gb2312‘ codec can‘t decode byte 0xf3 in position 307307: illegal multibyte sequence
torch.nn.LSTM类与torch..nn.GRU类并不属于单层的网络结构,它本质上是对RNNCell的二次封装,将基本的RNN Cell按照指定的参数连接起来,形成一个完整的RNN。
双向RNN会比单向RNN多一个隐藏层,6个独特的权值在每一个时步被重复利用,6个权值分别对应:输入到向前和向后隐含层,隐含层到隐含层自身,向前和向后隐含层到输出层。
链式地、有顺序地存储信息”很节省空间,对于中间状态的序列,大脑没有选择直接记住,而是存储计算方达。当我们需要取值时,直接将具体的数据输入,通过计算得出相应的给果。
Switchable Normalization算法,它可以将多种批量归一化算法融合并赋予可以学习的权重,在使用时,通过模型训练的方法来自动学习。
异常数据的特点:与主流样本中的规律不同,在一个样本中出现的概率要比主流数据出现的概率低很多。在每次训练中,忽略模型中一些节点,将小概率的异常数据获得学习的机会变得更低。这样,异常数据对模型的影响就会更小。
医学影像分割领域常用数据集
【Pytorch神经网络理论篇】 14 过拟合问题的优化技巧(一):基本概念+正则化+数据增大
【Pytorch神经网络实战案例】10 搭建深度卷积神经网络
ceil_mode - 如果等于True,计算输出信号大小的时候,会使用向上取整,代替默认的向下取整的操作
【Pytorch神经网络实战案例】09 使用卷积提取图片的轮廓信息(手动模拟Sobel算子)
nn.functional.xxx 需要自己定义 weight,每次调用时都需要手动传入 weight,而 nn.xxx 则不用。
在微积分中,无限细分的条件是,被细分的对象必须是连续的,例如直线可以无限细分为点、但是若干个点则无法进行细分。
Fashion-MNST数据集中的图片大小是28像素×28像素。每-幅图就是1行784(28×28)列的数据括二中的每个值优麦一个像素。
报错:OMP: Error #15: Initializing libomp.dylib, but found libiomp5.dylib already initialized.
数据之间没有任何连续性的数据称为离散数据,例如数据中的男、女。
反向传播的意义在于告诉模型我们需要将权重修改到什么数值可以得到最优解,在开始探索合适权重的过程中,正向传播所生成的结果与实际标签的目标值存在误差,反向传播通过这个误差传递给权重,要求权重进行适当的调整来达到一个合适的输出,最终使得正向传播所预测的结果与标签的目标值的误差达到最小,以上即为反向传播的核心思想
根据损失值,使用链式反向求导的方法,依次计算出模型中每个参数/权重的梯度
oftmax函数本质也为激活函数,主要用于多分类问题,且要求分类互斥,分类器最后的输出单元需要Softmax 函数进行数值处理。
对于分类任务来说,如果仅仅给出分类的结果,在某些场景下,提供的信息可能并不充足,这就会带来一定的局限。因此,我们建立分类模型,不仅应该能够进行分类,同时,也应该能够提供样本属于该类别的概率。这在现实中是非常实用的。例如,某人患病的概率,明天下雨概率等。因此,我们需要将z的值转换为概率值,逻辑回归使用sigmoid函数来实现转换。
神经网络:一种人工模仿动物中枢系统的数学模型,用于对函数进行近似估计
通过指定名称的方式对该层的权重进行快速提取
Autograd模块:在神经网络的反向传播中,基于正向计算的结果进行微分计算,从而实现对于网络权重的更新与迭代,提供了张量的自动求微分功能,可以通过代码来实现对反向过程的控制,使得权重参数朝着目标结果进行更新与发展。
view()只能作用于整块内存上的张量,若对于非连续内存上的张量则不可以用该函数处理。也无法对transpose()与permute()等改变后的张量再进行变化。
【Pytorch神经网络理论篇】 02 Pytorch快速上手(二)GPU与CPU张量切换+具有随机值的张量+张量的数学运算
Pytorch是基于Torch之上的python包,在底层主要通过张量的形式进行计算,Pytorch中的张量表示为同一数据类型的多位橘子。
【Pytorch神经网络实战案例】06 逻辑回归拟合二维数据
图注是不能和图片一起上传的, 一般在投稿系统中, “figure legend” 是放在文章正文“manuscript” 的最后一页统一上传的,而图片则是一张一张单独上传的。所以图注是与正文部分一起提交的, 而图片是单独提交的。
在论文写作过程中, 在表达观点时最重要的问题就是千万不要在论文写作过程中使用过重的语气批判其他作者的某些观点或结论, 这是最需要注意的一点, 否则很容易得罪其他人。
讨论部分的内容有时需要附属一下前面讨论的结果, 以精简的语言提一下即可, 后面需要有加深性的内容, 如果没有加深性的内容, 那么这篇文章里最好不要出现讨论的内容, 结果和讨论可以放在一起。结论要重点复述结果部分的内容, 讨论里的一些内容不写在结论里也是可以的。
首先建立一个 Excel 表格, 记录下哪年哪月读了哪篇文章、 标题是什么、 发表在什么期刊上、 内容要点有哪些、 该篇文章保存在哪一个文档中等等信息, 将这些内容录入进去以后, 再次复习时, 就可以很方便的在表格中通过搜索功能检索了,非常方便。
建议大家在读文献的过程中多记笔记。 另外, 在下一讲科技论文阅读与解析这节课中会详细讲解文献阅读技巧, 为大家解析如何提高英文论文阅读效率及如何通过阅读提高论文写作水平。