暂时未有相关云产品技术能力~
CSDN优质创作者
使用分水岭分割来分离图像中相互接触的对象。分水岭变换通过将图像视为一个曲面,其中亮像素表示较高处,暗像素表示较低处,从而找出图像中的“汇水盆地”和“分水岭脊线”。
使用边界跟踪方法,根据对象的圆度对其进行分类。
使用边缘检测和基本形态学检测细胞。如果某对象与背景有足够的对比度,则可以在图像中轻松检测到该对象。
演示如何使用纹理分割根据纹理识别区域。目标是将狗从浴室地板上分开。由于浴室地板的规则、周期性图案与狗皮毛规则、光滑的纹理之间的质地差异,这种分割在视觉上很明显。
说明如何根据纹理识别和分割区域。
影像数据差异可用于区分影像的不同表面特征,这些表面特征在不同的光谱通道中具有不同的反射率。通过查找可见红色通道和近红外通道之间的差异,该示例标识了包含重要植被的区域。
说明如何自动检测图像中的圆或圆形目标并可视化检测到的圆。
说明如何准备用于读取和预处理可能不适合内存的多分辨率全玻片图像 (WSI) 的数据存储。肿瘤分类的深度学习方法依赖于数字病理学,其中整个组织切片被成像和数字化。生成的 WSI 具有高分辨率,大约为 200,000 x 100,000 像素。WSI 通常以多分辨率格式存储,以促进图像的高效显示、导航和处理。 读取和处理WSI数据。这些对象有助于使用多个分辨率级别,并且不需要将图像加载到核心内存中。此示例演示如何使用较低分辨率的图像数据从较精细的级别有效地准备数据。可以使用处理后的数据来训练分类深度学习网络。
说明如何使用 K 均值聚类自动分割颜色。聚类是一种分离对象组的方法。K 均值聚类将每个对象视为在空间中有一个位置。它将对象划分为若干分区,使每个簇中的对象尽可能彼此靠近,并尽可能远离其他簇中的对象。您可以使用 函数将图像像素按值分成一个颜色空间内的若干个簇。此示例在 RGB 和 L*a*b* 颜色空间中执行图像的 k 均值聚类,以显示使用不同颜色空间如何改进分割结果。