暂时未有相关云产品技术能力~
CSDN优质创作者
使用 YOLO V2深度学习进行多类对象检测。
根据特征进行全景图像拼接。
使用校准相机测量平面物体。
使用迭代最近点算法组合多个点云以重建三维场景。
基于颜色特征的图像检索系统。
使用 HOG 功能和多类 SVM 分类器对数字进行分类。
使用点要素匹配在杂乱场景中检测对象。
使用多类掩码区域的卷积神经网络对人和汽车的各个实例进行分段。
基于深度学习的多光谱图像语义分割。
使用扩张卷积训练语义分割网络。语义分割网络对图像中的每个像素进行分类,从而生成按类分割的图像。语义分割的应用包括自动驾驶的道路分割和医疗诊断的癌细胞分割。
使用形态操作对视频流中的对象进行计数。
使用点特征匹配稳定从抖动平台捕获的视频。
定位和读取图像中的多个条形码。
使用深度学习从分割图生成图像
使用高斯混合模型检测和计数视频序列中的汽车。
使用迭代方法为语义分割网络生成对抗性。
使用 Grad-CAM 探索预训练语义分割网络的预测。
使用预训练卷积神经网络 (CNN) 作为特征提取器来训练图像类别分类器。
使用特征包方法进行图像类别分类。这种技术通常也被称为词袋。视觉图像分类是为受测图像分配类别标签的过程。类别可能包含代表几乎任何东西的图像,例如狗、猫、火车、船。
使用单类全卷积数据描述 (FCDD) 异常检测网络检测药丸图像上的缺陷。
AprilTags被广泛用作物体检测、定位应用的视觉标记,并作为相机校准的目标。AprilTags类似于QR码,但旨在编码更少的数据,因此可以更快地解码,这对于实时机器人应用程序非常有用。使用 AprilTags 作为校准模式的优点包括更好的特征点检测以及一致、可重复的检测。
使用基于标记的增强现实将虚拟内容呈现到场景中。
使用光学字符识别 (OCR) 识别图像中的七段数字。
使用计算机视觉工具箱中的函数执行光学字符识别。
相机校准是使用特殊校准模式的图像估计相机参数的过程。参数包括相机内在系数、失真系数和相机外在系数。
使用简单的卷积神经网络 (CNN) 对晶圆图上的八种制造缺陷进行分类。
使用最大稳定极值区域 (MSER) 特征检测器检测图像中包含文本的区域。
使用基于深度学习的文本检测器和 OCR 执行文本识别。
检测使用校准的立体摄像头拍摄的视频中的人物,并确定他们与摄像头的距离。
视觉同步定位和映射 (vSLAM) 是指计算摄像机相对于周围环境的位置和方向,同时映射环境的过程。 您可以使用单眼摄像头执行 vSLAM。但是,深度无法准确计算,估计的轨迹未知,并且随着时间的推移而漂移。要生成无法从第一帧开始三角测量的初始地图,必须使用单眼相机的多个视图。更好、更可靠的解决方案是使用 RGB-D 相机,它由一个 RGB 彩色图像和一个深度图像组成。
处理来自安装在车辆上的传感器的 3-D 激光雷达数据,以便在惯性测量单元 (IMU) 读数的帮助下逐步构建地图。这样的地图可以促进车辆导航的路径规划,也可以用于定位。
使用激光雷达数据构建地图并使用SLAM算法估计车辆轨迹。
通过分割地平面并查找附近的障碍物来处理来自安装在车辆上的传感器的 3-D 激光雷达数据。这可以促进车辆导航的可驾驶路径规划。该示例还演示如何可视化流式激光雷达数据。
训练 PointNet 网络以进行点云分类。 点云数据由各种传感器获取,例如激光雷达、雷达和深度摄像头。这些传感器捕获场景中物体的3D位置信息,这对于自动驾驶和增强现实中的许多应用非常有用。例如,区分车辆和行人对于规划自动驾驶汽车的路径至关重要。然而,由于每个对象的数据稀疏性、对象遮挡和传感器噪声,使用点云数据训练稳健分类器具有挑战性。深度学习技术已被证明可以通过直接从点云数据中学习强大的特征表示来解决其中的许多挑战。点云分类的开创性深度学习技术之一是PointNet。
使用Simulink基于图像跟踪白板上的标记。
在视频序列中检测和跟踪道路车道标记,并在驾驶员穿过车道时通知驾驶员。该示例说明了如何使用霍夫变换、霍夫线和卡尔曼滤波器模块来创建线检测和跟踪算法。该示例使用以下步骤实现此算法:1) 检测当前视频帧中的车道标记。2) 将当前车道标记与前一视频帧中检测到的车道标记相匹配。3) 找到左右车道标记。4) 如果车辆越过任一车道标记,则发出警告消息。
使用颜色信息来检测和跟踪在可能不存在车道标记的主要住宅环境中设置的道路边缘。基于颜色的跟踪示例说明了如何使用色彩空间转换块、霍夫变换块和卡尔曼滤波器块来检测和跟踪使用色调和饱和度的信息。
使用基于颜色的分割方法跟踪人员的面部和手部。
跟踪火车站的对象并确定哪些对象保持静止。公共场所的遗弃物品会引起当局的关注,因为它们可能会构成安全风险。算法(例如本例中使用的算法)可用于通过将他们的注意力引导到潜在的感兴趣区域来协助监控实时监控视频的安全人员。
使用光流估计在视频序列中检测和跟踪汽车。
识别彩色视频序列中的交通警告标志,如“停止”、“请勿进入”和“让行”。
使用二维规范化互相关进行模式匹配和目标跟踪。双击“编辑参数”块以选择要检测的类似目标的数量。您还可以更改金字塔因子。通过增加它,可以更快地将目标模板与每个视频帧匹配。更改金字塔因子可能需要更改阈值。
校正图像亮度不均匀问题并分析前景对象
使用两种策略快速处理阻塞图像,这两种策略可以对高分辨率图像的较小代表性样本进行计算。
使用 Inception-v3 深度神经网络对可能不适合内存的多分辨率全玻片图像 (WSI) 进行分类。 用于肿瘤分类的深度学习方法依赖于数字病理学,其中整个组织切片被成像和数字化。生成的 WSI 具有高分辨率,大约为 200,000 x 100,000 像素。WSI 通常以多分辨率格式存储,以促进图像的高效显示、导航和处理。
使用遮罩隔离感兴趣区域 (ROI) 来有效地处理被阻止的图像。 某些大图像源仅在图像的一小部分中具有有意义的数据。可以通过将处理限制为包含有意义数据的 ROI 来缩短总处理时间。使用掩码定义投资回报率。蒙版是一种逻辑图像,其中像素表示投资回报率。
使用工具箱可视化和分析视频或图像序列,检测交通视频中的汽车。
将存储在对象中的多边形标签转换为适用于语义分割工作流的标记阻止图像。 可以使用计算机视觉工具箱中的图像标记器应用来标记太大而无法放入内存和多分辨率图像的图像。有关详细信息,请参阅在图像标记器(计算机视觉工具箱)中标记大图像。图像标记器应用不支持对被阻止的图像进行像素标记。您只能使用 ROI 形状(如多边形、矩形和线条)创建标签。此示例演示如何使用函数将多边形 ROI 转换为像素标记的块图像,以进行语义分割工作流。
使用三种不同的照明算法估计场景的照明和执行白平衡。 眼睛非常善于判断不同照明条件下的白色。然而,数码相机如果不进行某种调整,就可以很容易地捕捉到具有强烈色偏的不真实图像。自动白平衡(AWB)算法试图以最少的用户输入来校正环境光,以便生成的图像看起来像我们眼睛看到的。
通过分析 L*a*b* 颜色空间来识别织物中的不同颜色