技术工作者
日志服务SLS是云原生观测与分析平台,支持Log、Metric、Trace等数据的大规模、低成本实时处理。为解决跨地域数据联合分析问题,SLS推出StoreView功能,可将多地域、多项目的Logstore组合成虚拟Logstore,简化查询分析流程。相比传统ETL方式,StoreView无需同步数据,减少存储成本和延迟,同时支持数据可见性控制、查询式ETL处理及异构数据Schema对齐等功能,提升跨域数据分析效率。通过__project__和__logstore__两个Meta字段,用户还能识别数据来源,实现精细化分析。
阿里云事件总线EventBridge自2020年发布以来,致力于构建统一的事件枢纽,支持微服务架构演进。其核心特性包括稳定安全、高性能低成本、开放集成及统一事件标准,适用于EDA、流式ETL、AI数据集成等多种场景。EventBridge于2025年6月3日正式商业化,提供灵活计费模式,包括事件量和CU配额计费,帮助企业高效实现松耦合、分布式的事件驱动架构。
仅需一句自然语言描述就能快速生成!借助通义灵码强大的 AI 代码理解与生成能力,即使是编程新手也能轻松创作属于自己的小游戏~
本文探讨了日志管理中的常见反模式及其潜在问题,强调科学的日志管理策略对系统可观测性的重要性。文中分析了6种反模式:copy truncate轮转导致的日志丢失或重复、NAS/OSS存储引发的采集不一致、多进程写入造成的日志混乱、创建文件空洞释放空间的风险、频繁覆盖写带来的数据完整性问题,以及使用vim编辑日志文件导致的重复采集。针对这些问题,文章提供了最佳实践建议,如使用create模式轮转日志、本地磁盘存储、单线程追加写入等方法,以降低日志采集风险,提升系统可靠性。最后总结指出,遵循这些实践可显著提高故障排查效率和系统性能。
Dify 是面向 AI 时代的开源大语言模型应用开发平台,GitHub Star 数超 10 万,为 LLMOps 领域增长最快项目之一。然而其在 MCP 协议集成、Prompt 敏捷调整及运维配置管理上存在短板。Nacos 3.0 作为阿里巴巴开源的注册配置中心,升级支持 MCP 动态管理、Prompt 实时变更与 Dify 环境变量托管,显著提升 Dify 应用的灵活性与运维效率。通过 Nacos,Dify 可动态发现 MCP 服务、按需路由调用,实现 Prompt 无感更新和配置白屏化运维,大幅降低 AI 应用开发门槛与复杂度。
JManus 是面向 Java 的企业级通用智能体框架,支持多 Agent 框架、MCP 协议和 PLAN-ACT 模式,具备高可用、弹性伸缩的特性。结合阿里云 Serverless 运行时 SAE 和 FC,实现稳定安全的智能体应用部署与运行。
企业希望自己的业务被 AI 赋能的诉求是强烈的,但大多数企业是不知道从哪里下手的
本文介绍了基于阿里云 Function AI 和 Serverless 架构的 AI 编程解决方案 VibeCoding,展示其如何通过 AI 快速开发并上线小游戏及平台。方案支持普通与专家两种模式,用户可选择不同模型与数据库配置,具备良好的扩展性与交互体验,适合开发者与企业快速实现创意落地。
本文聚焦 LoongSuite 生态核心组件 LoongCollector,深度解析 LoongCollector 在智算服务中的技术突破,涵盖多租户观测隔离、GPU 集群性能追踪及事件驱动型数据管道设计,通过零侵入采集、智能预处理与自适应扩缩容机制,构建面向云原生 AI 场景的全栈可观测性基础设施,重新定义高并发、强异构环境下的可观测性能力边界。
本文探讨了AI应用在实际落地过程中面临的三大核心问题:如何高效使用AI模型、控制成本以及保障输出质量。文章详细分析了AI应用的典型架构,并提出通过全栈可观测体系实现从用户端到模型推理层的端到端监控与诊断。结合阿里云的实践经验,介绍了基于OpenTelemetry的Trace全链路追踪、关键性能指标(如TTFT、TPOT)采集、模型质量评估与MCP工具调用观测等技术手段,帮助企业在生产环境中实现AI应用的稳定、高效运行。同时,针对Dify等低代码平台的应用部署与优化提供了具体建议,助力企业构建可扩展、可观测的AI应用体系。
继高可用架构团队的 Sentinel、Chaosblade 开源后,第三个重磅高可用产品:应用多活 AppActive 正式开源,形成高可用的三架马车,帮助企业构建稳定可靠的企业级生产系统,提高企业面对容灾、容错、容量等问题的稳态系统建设能力。