暂无个人介绍
本次的分享包括以下三个部分: 1. 介绍 Flink 在快手的应用场景以及目前规模; 2. 介绍 Flink 在落地过程的技术演进过程; 3. 讨论 Flink 在快手的未来计划。
众所周知,Apache Flink(以下简称 Flink)的 Runtime 是用 Java 编写的,而即将发布的 Apache Flink 1.9.0 版本则会开启新的 ML 接口和新的 flink-python 模块,Flink 为什么要增加对 Python 的支持,想必大家一定好奇。
首届 Apache Flink 极客挑战赛发布,聚焦机器学习与计算性能两大热门赛题,提供 Apache Flink 强大的大数据计算平台与 Intel Analytics Zoo 深度学习计算平台,帮助参赛队伍实现机器学习的实践应用,完成计算性能的优化挑战。
在这次访谈中,贾扬清向我们透露了他加入阿里的原因,并对他目前在阿里主要负责的工作做了详细说明,他不仅回顾了过去 6 年 AI 框架领域发生的变化,也分享了自己对于 AI 领域现状的观察和对未来发展的思考。结合自己的经验,贾扬清也给出了一些针对 AI 方向选择和个人职业发展的建议,对于 AI 从业者来
TopN 是统计报表和大屏非常常见的功能,主要用来实时计算排行榜。流式的 TopN 不同于批处理的 TopN,它的特点是持续的在内存中按照某个统计指标(如出现次数)计算 TopN 排行榜,然后当排行榜发生变化时,发出更新后的排行榜。
Flink SQL 是于2017年7月开始面向集团开放流计算服务的。虽然是一个非常年轻的产品,但是到双11期间已经支撑了数千个作业,在双11期间,Blink 作业的处理峰值达到了5+亿每秒,而其中仅 Flink SQL 作业的处理总峰值就达到了3亿/秒。
Connector 是连接外部数据和blink计算框架的桥梁,也是流计算的入口和出口。目前,blink支持了集团内部绝大多数的上下游(如下图),详细的接入方法可以见官方文档,本文主要阐述connector设计和使用上需要注意的问题。
通俗讲retract就是传统数据里面的更新操作,也就是说retract是流式计算场景下对数据更新的处理方式。
流计算中一个常见的需求就是为数据流补齐字段。因为数据采集端采集到的数据往往比较有限,在做数据分析之前,就要先将所需的维度信息补全。比如采集到的交易日志中只记录了商品 id,但是在做业务时需要根据店铺维度或者行业纬度进行聚合,这就需要先将交易日志与商品维表进行关联,补全所需的维度信息。
去重逻辑在业务处理中使用广泛,大致可以分两类:DISTINCT去重和FIRST_VALUE主键去重,两者的区别是DISTINCT去重是对整行数据进行去重,比如tt里面数据可能会有重复,我们要去掉重复的数据;FIRST_VALUE是根据主键进行去重,可以看成是一种业务层面的去重,但是真实的业务场景使用也很普遍,比如一个用户有多次点击,业务上只需要取第一条。
最近在学习Flink的Fault Tolerance,了解到Flink在Chandy Lamport Algorithm的基础上扩展实现了一套分布式Checkpointing机制,这个机制在论文"Lightweight Asynchronous Snapshots for Distributed Dataflows"中进行了详尽的描述。
2017年6月22号,由“京城学堂”和阿里巴巴集团技术发展部主办的“对话科技”系列讲座邀请到了Apache Flink项目的PMC成员,来自德国DataArtisans公司的Till Rohrmann,在北京阿里中心为关注实时计算技术的阿里同学做了一场关于Apache Flink技术发展的精彩分享。
在Blink的流式任务中,State相关的操作通常都会成为整个任务的性能瓶颈。实时计算部-查询和优化团队开发了MiniBatch功能,大幅降低了State操作的开销,在今年的双11中,几乎所有适用的任务都启用了MiniBatch功能。
阿里巴巴需要研发世界级一流的流式计算引擎,实时处理海量数据,提供在线统计、学习和预测能力,不仅支持阿里巴巴自己的核心电商场景,同时也能通过阿里云向外部中小企业提供流式计算服务,输出实时计算能力,这就是我今天要分享的最新一代阿里巴巴实时计算引擎Blink。
我们提出了Dataflow模型,并详细地阐述了它的语义,设计的核心原则,以及在实践开发过程中对模型的检验。