暂时未有相关云产品技术能力~
better bench 简介:CS博士;研究领域:类脑计算、持续学习、AI、数据挖掘、自然语言处理、数学建模。
详细介绍了在第十届“泰迪杯”数据挖掘挑战赛B题中对电力系统负荷进行预测分析的方法,包括数据预处理、特征工程、平稳性检验、数据转换以及使用ARIMA、AutoARIMA、LSTM、Prophet和多元Prophet模型进行建模和预测,并提供了完整代码的下载链接。
解决wxPython安装问题的两种方法,包括通过指定源使用pip安装和先下载.whl文件再本地安装的具体步骤。
关于如何在Mac系统下使用SciDavis软件绘制科研论文所需的图表,包括安装指导和创建柱状图、折线图、扇形图的详细步骤教程。
第十届“泰迪杯”数据挖掘挑战赛B题的基线解决方案,涉及电力系统负荷预测分析,包括数据读取、特征处理、模型训练和评估,以及使用了LightGBM进行回归预测。
中国工程院张平院士关于"AI使能6G演进与应用"的演讲摘要。
在Deepin20系统下,如何解决Linux系统中matplotlib和seaborn绘图时出现的中文乱码问题,提供了临时和永久的解决方法,包括更换字体设置、修改配置文件和清除缓存等步骤。
文章详细实现了基于不同距离度量(欧氏、切比雪夫、曼哈顿)的Kmeans聚类算法,并提供了Python代码,展示了使用曼哈顿距离计算距离矩阵并输出k=3时的聚类结果和轮廓系数评价指标。
如何在Halcon软件中实现图像亚像素边缘检测,包括读取图片、图像阈值化、边界提取、区域扩张、亚像素边缘提取、轮廓拟合和彩色绘图等步骤,并提供了相应的Halcon代码实现和检测效果展示。
基于灰度矩的亚像素边缘检测方法,包括理论基础和MATLAB实现,通过计算图像的灰度矩来精确定位边缘位置,并提供了详细的MATLAB代码和实验结果图。
【8月更文挑战第5天】Matlab绘制不同类型的图表(包括折线图、柱状图和散点图)的代码示例,以及如何调整图表的字体大小、坐标轴描述、图例和网格线等属性,以满足论文所需的格式要求。
关于2021年亚太杯数学建模赛题A的解析,主要介绍了图像边缘分析与应用的方法,包括亚像素边缘检测、图像目标尺寸测量和亚像素直线段、圆弧段、椭圆段的分割,并提供了MATLAB和Halcon软件的实现方案。
基于Zernike矩的亚像素边缘检测理论,并提供了相应的MATLAB代码实现,包括定义7x7的Zernike模板、图像处理、边缘检测和连通域分析等步骤。
在Deepin Linux系统上安装Halcon机器视觉工具的详细步骤,包括下载安装包、安装、配置环境、复制license文件以及启动Halcon软件。
无线通信中用于减少信号失真和噪声影响的两种常见信道均衡技术:Zero Forcing (ZF) 和 Minimum Mean Square Error (MMSE),并给出了ZF均衡器的数学表达式及其实现方法。
文章介绍了如何使用Python和Commpy工具包实现OFDM通信系统的仿真,包括发射机、信道和接收机的过程,并支持BPSK、QPSK、8PSK、16QAM、64QAM等多种调制方式,同时展示了导频插入、信道冲击响应、星座映射的可视化,并计算了系统的误比特率。
对2021高校大数据挑战赛中智能运维异常检测与趋势预测赛题的赛后总结与分析,涉及赛题解析、不足与改进,并提供了异常检测、异常预测和趋势预测的方法和模型选择的讨论。
使用Commpy开源包在Python中实现BPSK、QPSK、8PSK、8QAM、16QAM、64QAM等调制和解调方法的具体代码示例,但不包括8QAM的Commpy实现,以及一个完整的编码和解码示例。
如何在Linux系统中修改MATLAB的默认打开地址(默认工作空间),通过编辑matlabrc.m文件来设置启动MATLAB时的初始目录。
2021年数学建模“华为杯”B题的方案设计和实现代码,包括数据预处理、特征选择、聚类算法、气象特征分析以及使用LSTM神经网络进行多变量时间序列预测以实现空气质量预报。
文章介绍了Conformer模型,这是一种结合了Transformer的自注意力机制和CNN卷积模块的混合模型,旨在提高语音识别任务的性能,通过自注意力捕捉全局上下文信息,同时利用卷积模块有效捕获局部特征。
如何在Markdown编辑器Typora中使用HTML语法实现同一行内文字的左对齐和右对齐布局。
如何在Linux或Mac系统中使用tree命令自动生成项目结构目录,并将其格式化后放入项目的README.md文件中以展示项目结构。
文章介绍了使用TensorFlow 2进行手写数字识别的实验报告,包括实验目的、采用全连接神经网络模型进行训练的过程、以及如何使用交叉熵作为损失函数来识别MNIST数据集的手写数字。
【8月更文挑战第3天】如何使用Gensim库中的FastText模型来训练词向量,并演示了如何保存和加载这些训练好的模型。
在Mac系统下的VSCode环境中配置LaTeX工作流以便插入和引用参考文献的详细步骤。
在使用tqdm库时遇到的“'module' object is not callable”错误,并给出了正确的导入方式以及一些使用tqdm的常见示例。
本文介绍了使用TensorFlow 2进行猫狗识别的实验报告,包括实验目的、采用卷积神经网络(CNN)进行训练的过程,以及如何使用交叉熵作为损失函数来识别猫狗图像数据集。
如果解决了该问题,系统仍然进不去不要惊慌,继续排查下一个错误。
如何在Deepin 20系统中从零开始配置一个完美的VScode for Python开发环境,包括安装Anaconda、VScode、必要的插件、汉化、主题和字体设置,以及如何运行和调试Python程序。
如何在Deepin 20系统启动时进入命令行界面(终端),通过在GRUB界面中编辑内核启动参数来引导系统进入多用户文本模式(运行级别3)。
解决Deepin 20系统启动时遇到的“error: driver pcspkr is already registered aborting”错误的方法,通过在GRUB引导加载器中临时更改启动选项进入多用户文本模式,并在系统中创建一个黑名单文件来禁用pcspkr驱动。
本文分析了深度神经网络中梯度消失和梯度爆炸的原因、表现形式及解决方案,包括梯度不稳定的根本原因以及如何通过网络结构设计、激活函数选择和权重初始化等方法来解决这些问题。
文章详细介绍了注意力机制(Attention)的原理、不同类型的分类以及如何在Keras中实现Attention。文章涵盖了Attention的基本概念、计算区域、所用信息、结构层次等方面,并提供了实现示例。
本文解释了凸集、凸函数、凸优化以及非凸优化的概念,并探讨了它们在机器学习中的应用,包括如何将非凸问题转化为凸问题的方法和技术。
本文解析了P问题、NP问题、NP-hard问题以及NP-Complete问题的概念,并通过实例帮助理解NP问题的特点和复杂性。
在使用json.dump时遇到的“Object of type ‘float32’ is not JSON serializable”错误的方法,通过自定义一个JSON编码器类来处理NumPy类型的数据。
Transformer模型的核心概念、优缺点以及在多个领域的应用,并提供了针对Transformer架构的面试问题及答案。
本文介绍了如何使用纯Transformer模型进行图像识别,并讨论了模型的结构、训练策略及其在多个图像识别基准上的性能。
如何在Microsoft Word 2019中设置页码从指定页面(通常是正文开始页)启动的方法。
把公式图片化,插入到软件中。
在Mac系统下给Endnote 20安装GB/T中文文献格式的步骤以及如何利用Endnote在Word中插入符合GB/T格式的参考文献。
Markdown或者LaTeX在单个字母上加一横、一点、两点、三角
Mac系统下使用Autodesk EAGLE PCB设计软件的基本教程,包括软件的安装、常用命令和工具的使用方法。
一个在Mac版Microsoft Word中使用LaTeX语法插入公式的间接方法,通过Pages文稿创建和编辑LaTeX公式后再复制到Word中。
Mac系统下使用Endnote 20添加文献信息和PDF文件的详细步骤,包括下载.enw文件和在Endnote中导入这些文件的方法。
解决TensorBoard版本冲突的方法,即通过卸载冲突的TensorFlow相关包然后重新安装所需的版本。
成为一名优秀的机器学习算法工程师所需要具备的技能和知识,包括理论基础、数学能力、编程技能、实践经验以及对特定领域的深入了解,并提供了学习资源和面试准备建议。
本文通过通俗易懂的方式解释了元学习(Meta-learning)的概念及其与传统监督学习的区别,并通过实例说明了元学习是如何让模型具备快速学习新任务的能力。
本文提供了两种不同的方法来实现16-QAM(正交幅度调制)的调制和解调过程,一种是使用commpy库,另一种是通过手动定义映射字典来实现。
原因是CUDA10.1不支持Tensorflow2.2+。那就使用Tensorflow2.0。