暂时未有相关云产品技术能力~
better bench 简介:CS博士;研究领域:类脑计算、持续学习、AI、数据挖掘、自然语言处理、数学建模。
本文分析了谷歌翻译在谷歌浏览器中失效的原因,并提供了针对Mac OS、Windows和Linux系统的解决方案,包括下载和执行特定软件以修复翻译服务不响应的问题。
本文介绍了两种解决Python使用pandas库读取Excel时,数字前填充的0丢失问题的方法:一是在读取时指定列以字符串格式读取,二是在Excel中预先将数值转换为文本格式。
本文介绍了如何在服务器上启动Jupyter Notebook并通过SSH隧道在本地浏览器中访问和编辑程序的详细步骤,包括服务器端Jupyter的启动命令、本地终端的SSH隧道建立方法以及在浏览器中访问Jupyter Notebook的流程。
本文介绍了2023年第十一届泰迪杯数据挖掘挑战赛C题的解决方案,详细阐述了如何构建泰迪内推平台的招聘与求职双向推荐系统,包括数据收集、分析、画像构建、岗位匹配度和求职者满意度模型的建立,以及履约率最优化的推荐模型,提供了27页的论文和实现代码。
本文介绍了2023年第十一届泰迪杯数据挖掘挑战赛B题的解决方案,深入分析了产品订单数据,并使用Arimax和Var模型进行了需求预测,旨在为企业供应链管理提供科学依据,论文共23页并包含实现代码。
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
本文详细介绍了2023年第十三届MathorCup高校数学建模挑战赛A题的解题过程,包括量子计算机在信用评分卡组合优化中的应用,提供了详细的建模方案、QUBO模型的构建方法以及相应的代码实现。
本文介绍了在Python环境下安装ConcurrentLogHandler时遇到的"use_2to3 is invalid"错误的解决方法,主要是通过降级setuptools到57.5.0版本来解决该问题。
本文提供了第十一届泰迪杯数据挖掘挑战赛B题问题二的详细解题步骤,包括时间序列预测模型的建立、多元输入时间预测问题的分析、时间序列预测的建模步骤、改进模型的方法,以及使用Python进行SARIMA模型拟合和预测的具体实现过程。
本文详细介绍了第十一届泰迪杯数据挖掘挑战赛B题的解决方案,涵盖了对产品订单数据的深入分析、多种因素对需求量影响的探讨,并建立了数学模型进行未来需求量的预测,同时提供了Python代码实现和结果可视化的方法。
Ubuntu系统中通过三步简单流程更新Cmake到最新版本的具体操作方法,包括卸载旧版本、下载并运行安装脚本以及创建软链接。
本文提供了一份包含30个问题的机器学习笔试试题集,覆盖了回归模型、极大似然估计、特征选择、模型评估、正则化方法、异常值检测、分类问题等多个机器学习领域的关键知识点。
本文介绍了如何使用MATLAB生成包含数据和标签的JSON格式数据集文件,并展示了用Python读取该JSON文件作为训练集的方法。
本文介绍了三种金融量化分析中的通道突破策略:布林带策略(Bollinger Band)、肯特纳通道策略(Keltner Channel)和唐奇安通道策略(Donchian Channel),并提供了每种策略的原理和Python实现代码。
本文提供了一份包含30个问题的Python笔试试题集
本文提供了一份包含20个问题的深度学习笔试试题集。
【8月更文挑战第7天】本文介绍了在MATLAB-Simulink环境中实现OFDM通信系统仿真的方法,包括发送机、信道和接收机的设计,支持BPSK、QAM等多种调制方式,并考虑了Rician、AWGN、Rayleigh等信道模型。
本文详细介绍了在Mac OS系统上安装MySQL数据库的步骤,包括下载、安装、配置环境变量、启动服务、授权设置以及解决常见问题,并提供了一些常用的MySQL命令。
本文介绍了牛客网题目"数组中未出现的最小正整数"的解法,提供了一种满足O(n)时间复杂度和O(1)空间复杂度要求的原地排序算法,并给出了Python实现代码。
本文提供了奇虎360公司2022年秋招机器学习算法工程师岗位的笔试题内容,包括选择题和编程题,涉及概率统计、数据结构、机器学习、计算机组成原理等多个领域。
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
关于PyTorch面试题的总结,包括PyTorch的定义、基本要素、张量概念、抽象级别、张量与矩阵的区别、不同损失函数的作用以及Conv1d、Conv2d和Conv3d的区别和反向传播的解释。
关于TensorFlow面试题的总结,涵盖了TensorFlow的基本概念、张量的理解、TensorFlow的优势、数据加载方式、算法通用步骤、过拟合解决方法,以及TensorFlow与PyTorch的区别和选择建议。
本文介绍了主成分分析(PCA)算法,包括PCA的基本概念、算法过程、中心化处理的必要性、正交变换的目的,以及PCA与线性判别分析(LDA)在降维上的区别。
长短时记忆网络(LSTM)的基本概念、解决梯度消失问题的机制,以及介绍了包括梯度裁剪、改变激活函数、残差结构和Batch Normalization在内的其他方法来解决梯度消失或梯度爆炸问题。
XGBoost与GBDT的区别、XGBoost使用泰勒二阶展开的原因、并行训练的原理、速度优势、防止过拟合的策略以及处理缺失值的方法,突出了XGBoost在提升模型性能和训练效率方面的一系列优化。
九大排序算法的时间复杂度、空间复杂度和稳定性,提供了对各种排序方法效率和特性的比较分析。
文章讨论了解决Mac系统中Vscode里LeetCode插件无法刷剑指Offer题库的问题,并提供了一些相关的使用技巧和资源链接。
LeetCode 674题 "最长连续递增序列" 的Python解决方案,使用动态规划算法找出给定整数数组中最长连续递增子序列的长度。
2022年京东面向23届的算法工程师笔试题,包含了关于MySQL内部存储代码的优势、SQL使用、数学问题、ReLU函数特性、栈操作以及F1-Score计算等方面的问题。
机器学习评估指标中的准确率、精确率、召回率、误报率和漏报率等概念,并给出了这些指标的计算公式。
聚类算法中常用的距离度量方法及其数学表达式,包括欧式距离、曼哈顿距离、切比雪夫距离、闵可夫斯基距离、余弦相似度等多种距离和相似度计算方式。
本文介绍了如何通过观察训练误差和验证误差来判断模型是否出现过拟合或欠拟合,并提供了相应的解决方案,包括增加数据、调整模型复杂度、使用正则化技术等。
LeetCode第53题"最大子数组和"的Python解决方案,利用动态规划的思想,通过一次遍历数组并维护当前最大和以及全局最大和来求解。
文章介绍了如何判断函数是凸函数还是非凸函数,包括凸函数的定义、几何意义、判定方法(一元函数通过二阶导数判断,多元函数通过Hessian矩阵的正定性判断),以及凸优化的概念和一些经典的凸优化问题。
文章探讨了决策树对缺失值不敏感的原因,并提出了处理缺失值的多种策略,包括在属性选择、分割点决定和模型测试阶段的不同处理方法。
解释了对偶的概念,指出对偶性在优化问题中的重要性,尤其是在强对偶性成立时可以提供主问题的最优下界,并且详细阐述了支持向量机(SVM)中对偶算法的应用,包括如何将原始的最大间隔优化问题转换为对偶问题来求解。
Python函数isContinuousChar,使用正则表达式来检测字符串中是否存在连续的相同字母或数字,并返回存在此类字符的列表长度,如果列表长度为0则表示不存在连续相同的字符。
介绍了机器学习中的几种集成学习算法,包括随机森林、AdaBoost、梯度提升决策树(GBDT)和XGBoost,解释了它们的概念、优缺点、算法过程以及系统设计。
金山办公2020校招大数据和机器学习算法笔试题的解析,涵盖了编程、数据结构、正则表达式、机器学习等多个领域的题目和答案。
关于顺丰公司数据挖掘笔试题的解析,内容涵盖了数据结构、算法、编程语言特性、数据库查询等多个计算机科学领域的知识点。
主成分分析(PCA)的原理和算法过程。
解决WPS中Mathtype插件选项卡显示为灰色且无法使用的问题的步骤,包括安装宏组件VBA WPS,复制特定的文件到WPS安装目录和启动目录,并在完成这些步骤后重新打开WPS以使选项卡可用。
文章介绍了PageRank算法的基本概念和数学模型,包括如何通过一阶马尔科夫链定义随机游走模型以及如何计算网页的重要性评分,并提供了PageRank迭代算法的具体步骤。
K-Means聚类算法的基本介绍,包括算法步骤、损失函数、优缺点分析以及如何优化和改进算法的方法,还提到了几种改进的K-Means算法,如K-Means++和ISODATA算法。
在Mac系统下使用VSCode的LeetCode插件时遇到“leetcode.toggleleetcodecn”命令找不到的错误解决方法,主要是通过从Nodejs官网下载并安装最新版本的Node.js来解决环境配置问题。
本文提供了解决在VScode中使用LeetCode插件时遇到“Failed to test the solution. Please open the output channel for details.”错误的方法,主要是通过修改setting.json文件中的输出文件夹配置来解决。
第十届“泰迪杯”数据挖掘挑战赛C题的解决方案,涉及疫情背景下周边游需求图谱分析,包括微信公众号文章分类、周边游产品热度分析、本地旅游图谱构建与分析,以及疫情前后旅游产品需求变化分析的Python实现方法。
本文介绍了二维装箱问题的Bottom-Left算法,并提供了Python实现,包括主函数、装箱顺序、重叠检测、最终位置计算等,同时指出了算法的缺点并提出了使用人工蜂群算法进行改进的方法,最后提供了完整代码的下载链接。
第十届“泰迪杯”数据挖掘挑战赛B题中对电力系统负荷预测分析进行时间突变分析的Python实现方法,包括定义绘图函数、应用阈值查找异常值、手动设置阈值、使用分位数和3Sigma原则(IQR)设定阈值,以及根据分位数找到时间突变的步骤,并提供了完整代码的下载链接。