暂时未有相关云产品技术能力~
暂无个人介绍
网络介质层:将模拟信号转化成数字信号,会形成一个MAC地址(本机地址,一般情况下不会变化)。百兆宽带用4根线,千兆宽带用8根线进行传输。
核心思想:从高层次角度讲,人们处理复杂性有一个通用的技术,及抽象。由于不能掌握全部的复杂对象,选择护士他的非本质细节,而去处理泛化和理想化的对象模型。
C++11支持语言级别的多线程编程,可以跨平台运行,支持windows/linux/mac等。
band1st和band2nd本身还是一个函数对象。
为了提升MySQL数据库(基于C/S设计(客户端-服务器))的访问瓶颈,除了在服务器端增加缓冲服务器缓存常用的数据之外
这里提供了两个C/C++中服务器与客户端之间通讯的两个程序,程序中封装了通信之间的函数方法,我们以这个程序为例进行封装。
请求方法有:GET、POST等。URL:请求地址。协议版本:HTTP的版本。
Socket通信三要素:通信的目的地址、使用的端口号(http 80 / smtp 25)、使用的传输协议(TCP、UDP)。
最近的工作引入了用于文档级事件论元提取(文档级EAE)的抽象语义表示(AMR),因为AMR提供了对复杂语义结构的有用解释,并有助于捕获长距离依赖关系
事件论元抽取(EAE)识别给定事件的事件论元及其特定角色。最近在基于生成的EAE模型方面取得的进展显示出了与基于分类的模型相比的良好性能和可推广性
事件论元抽取(EAE)是事件抽取的子任务之一,旨在识别每个实体在特定事件触发词中的作用。尽管先前的工作在句子级EAE方面取得了成功,但对文档级的探索较少。
transition_amr_parser是IBM公司开源的AMR paraing和AMR text-to-generation工具,在NLP领域中经常会用到,但是这个安装过程中可能会存在很多坑
Ubuntu20.04.2系统本身不含有JDK,而CoreNLP需要依赖JDK进行运行,所以需要先安装好JDK,可以输入java,然后系统会自动提示没有安装JDK,并会推荐安装的版本
在文本到AMR解析中,当前最先进的语义解析器集成了几个不同模块或组件的繁琐管道,并利用图重新分类,即在训练集的基础上开发的一组特定内容的启发式方法。
在日常深度学习中,经常会将日志信息打印在控制台,但是由于打印的信息太多或者终端关闭后就无法查看具体的日志信息
抽象语义表示(AMR)以图形结构突出文本的核心语义信息。最近,预训练语言模型(PLM)分别具有AMR解析和AMR到文本生成的高级任务。
我们提出了一个基于注意力的模型,将AMR解析视为序列到图的转导。与大多数依赖于预训练的对齐器、外部语义资源或数据扩充的AMR解析器不同
事件抽取是自然语言处理的一项基本任务。找到事件论元(如事件参与者)的角色对于事件抽取至关重要。
远程监督假设任何包含相同实体对的句子都反映了相同的关系。先前的远程监督关系抽取(DSRE)任务通常独立地关注sentence-level或bag-level去噪技术
少样本关系提取旨在通过在每个关系中使用几个标记的例子进行训练来预测句子中一对实体的关系。最近的一些工作引入了关系信息
多分类交叉熵就是对二分类交叉熵的扩展,在计算公式中和二分类稍微有些许区别,但是还是比较容易理解
最近想将mmsegmentation打包成exe进行使用,但是遇到了一个问题,在打包的过程中不会显示报错信息,但是在执行exe程序之后,exe会出现ModuleNotFoundError: No module named 'mmcv._ext'的报错,导致软件崩溃。
由于视网膜血管的纹理复杂和成像对比度低,导致精确的视网膜血管分割具有挑战性。以前的方法通常通过级联多个深度网络来细化分割结果
联合实体和关系提取是自然语言处理和知识图构建中的一项重要任务。现有的方法通常将联合提取任务分解为几个基本模块或处理步骤,以使其易于执行
事件抽取是从海量文本数据中快速获取事件信息的一项重要研究任务。随着深度学习的快速发展,基于深度学习技术的事件抽取已成为研究热点。文献中提出了许多方法、数据集和评估指标,这增加全面更新调研的需求。
到目前为止,命名实体识别(NER)已经涉及三种主要类型,包括扁平、重叠(又名嵌套)和不连续NER,它们大多是单独研究的。
我们介绍了Segment Anything (SA)项目:一个用于图像分割的新任务、模型和数据集。在数据收集循环中使用我们的高效模型,我们构建了迄今为止(到目前为止)最大的分割数据集,在1100万张授权的图像上拥有超过10亿个掩码。
在阅读OneIE代码时,突然看到一段代码十分精妙,用来预测BERT等预训练语言模型在使用tokenizer进行分词时
我们提出了一项利用多语言预训练生成语言模型进行零样本跨语言事件论元抽取(EAE)的研究。通过将EAE定义为语言生成任务,我们的方法有效地编码事件结构并捕获论元之间的依赖关系。
最近许多句子级事件检测的工作都集中在丰富句子语义上,例如通过多任务或基于提示的学习。尽管效果非常好,但这些方法通常依赖于标签广泛的人工标注
图神经网络(Scarselli et al, 2009)已被广泛用于编码事件检测的依赖树,因为它们可以基于信息聚合方案有效地捕获相关信息(Cao et al, 2021)。
报错很奇怪,为啥我安装的是torchnlp,出现了没有匹配版本的torch。为此,我开始在网上寻找解决方法,竟然发现在没有人遇到这个错误???顿时觉得amazing,难道只有我安装不成功
事件检测旨在通过识别和分类事件触发词(最具代表性的单词)来从文本中检测事件。现有的大部分工作严重依赖复杂的下游网络,需要足够的训练数据。
补全知识三元组的任务具有广泛的下游应用。结构信息和语义信息在知识图补全中都起着重要作用。与以往依赖知识图谱的结构或语义的方法不同
事件抽取通常被建模为一个多分类问题,其中事件类型和论元角色被视为原子符号。这些方法通常仅限于一组预定义的类型。
事件抽取(EE)是信息抽取的基本任务,旨在从非结构化文本中抽取结构化事件信息。大多数先前的工作集中于抽取平面事件,而忽略了重叠或嵌套的事件。
事件抽取(EE)是信息抽取的基本任务,旨在从非结构化文本中抽取结构化事件信息。大多数先前的工作集中于抽取平面事件,而忽略了重叠或嵌套的事件。
在本文中,我们提出了一个既有效又高效的模型PAIE,用于句子级和文档级的事件论元抽取(EAE),即使在缺乏训练数据的情况下也能很好地泛化。
信息提取受到其不同目标、异构结构和特定需求模式的影响。本文提出了一个统一的文本到结构生成框架,即UIE,该框架可以对不同的IE任务进行统一建模,自适应生成目标结构
补全知识三元组的任务具有广泛的下游应用。结构信息和语义信息在知识图补全中都起着重要作用。与以往依赖知识图谱的结构或语义的方法不同
从新闻中提取事件在下游应用程序中有很多好处。然而,今天的事件提取(EE)系统通常专注于单一的模态——无论是文本还是图像
视觉-语言(V+L)预训练模型通过理解图像和文本之间的对齐关系,在支持多媒体应用方面取得了巨大的成功。
我们介绍了一个新的任务,多媒体事件抽取(M2E2),旨在从多媒体文档中抽取事件及其参数。我们开发了第一个基准测试
从非结构化文本中抽取关系三元组对于大规模知识图构建至关重要。然而,现有的工作很少能解决重叠三元组问题,即同一句子中的多个关系三元组共享相同的实体。
预测知识图(KG)中缺失的事实是至关重要的,因为现代知识图远未补全。由于劳动密集型的人类标签,当处理以各种语言表示的知识时,这种现象会恶化。
当在整个文档中描述事件时,文档级事件抽取(DEE)是必不可少的。我们认为,句子级抽取器不适合DEE任务,其中事件论元总是分散在句子中
从新闻中提取事件在下游应用程序中有很多好处。然而,今天的事件提取(EE)系统通常专注于单一的模态——无论是文本还是图像
视觉-语言(V+L)预训练模型通过理解图像和文本之间的对齐关系,在支持多媒体应用方面取得了巨大的成功。
从非结构化文本中抽取关系三元组对于大规模知识图构建至关重要。然而,现有的工作很少能解决重叠三元组问题,即同一句子中的多个关系三元组共享相同的实体。
我们介绍了一个新的任务,多媒体事件抽取(M2E2),旨在从多媒体文档中抽取事件及其参数。我们开发了第一个基准测试