browser-use 是一个开源的 AI 驱动浏览器自动化框架,能够高效实现在线任务自动化,支持 AI 大模型操作网页,具备强大的社区影响力(GitHub 星数超 63.4k)。它通过精巧的 prompt 设计和多类型消息组合,实现与大模型的高效交互,可完成登录、数据提取、文档生成等复杂任务。其核心技巧包括结构化输入输出、任务拆解、历史记忆管理及多模态支持,为 AI 代理应用提供实践范例与技术启发。
本文主要介绍了一个名为 ROLL(Reinforcement Learning Optimization for Large-scale Learning) 的高效强化学习框架,专为大规模语言模型(LLM)的训练和优化而设计。文章从多个角度详细阐述了 ROLL 的设计理念、核心特性、技术架构、应用场景及实验效果。