暂时未有相关云产品技术能力~
暂无个人介绍
本文详细介绍了大型语言模型(LLM)的结构、参数量、显存占用、存储需求以及微调过程中的关键技术点,包括Prompt工程、数据构造、LoRA微调方法等。
本文旨在通过约束解码技术,赋予大型语言模型在生成SQL等结构化内容时更高的准确性、可控性与可解释性,从而满足企业级场景对“精准生成”的严苛要求。
本文深入探讨了Model Context Protocol (MCP) 在企业级环境中的部署与管理挑战,详细解析了五种主流MCP架构模式(直连远程、代理连接远程、直连本地、本地代理连接本地、混合模式)的优缺点及适用场景,并结合Nacos服务治理框架,提供了实用的企业级MCP部署指南。通过Nacos MCP Router,实现MCP服务的统一管理和智能路由,助力金融、互联网、制造等行业根据数据安全、性能需求和扩展性要求选择合适架构。文章还展望了MCP在企业落地的关键方向,包括中心化注册、软件供应链控制和安全访问等完整解决方案。
Dify是一款开源的大模型应用开发平台,支持通过可视化界面快速构建AI Agent和工作流。然而,Dify本身缺乏定时调度与监控报警功能,且执行记录过多可能影响性能。为解决这些问题,可采用Dify Schedule或XXL-JOB集成Dify工作流。Dify Schedule基于GitHub Actions实现定时调度,但仅支持公网部署、调度延时较大且配置复杂。相比之下,XXL-JOB提供秒级调度、内网安全防护、限流控制及企业级报警等优势,更适合大规模、高精度的调度需求。两者对比显示,XXL-JOB在功能性和易用性上更具竞争力。
本文介绍了一种基于阿里云计算巢的一站式MCP工具解决方案,解决了传统MCP工具集成中的效率低下、调用方式割裂和动态管理困难等问题。方案通过标准化协议实现多MCP工具批量部署,提高云资源利用率,并支持OpenAPI与MCP双通道调用,使主流AI助手如Dify、Cherry Studio等无缝接入。内容涵盖背景、原理剖析、部署使用实战及问题排查,最后强调MCP协议作为“通用语言”连接数字与物理世界的重要性。
本文探讨了Copilot 3.0架构中规划模块结合DeepSeek R1强化学习(GRPO)的实践,重点分析多智能体架构下大模型如何灵活调度多个智能体解决实际问题。文章从背景、问题分析、Planning角色、难点、效果对比到解决方案进行了深入讲解,并通过实验现象展示了有无思考过程对模型性能的影响。结果显示,GRPO训练后推理长度显著降低,准确率提升7.4个百分点,同时解决了复杂问题与简单问题处理间的平衡问题。
MongoDB 8.0 在性能优化、工作负载管理、数据库扩展、安全性增强及向量搜索能力等方面实现了多项突破。新版本大幅提升主从复制效率,降低延迟,并支持灵活的分片迁移与在线重分片。同时,新增 query shape 和持久化索引过滤器功能,帮助用户精细化管理高并发场景。此外,社区版引入全文与向量搜索,助力 AI 应用开发。阿里云作为国内首家支持 MongoDB 8.0 的厂商,提供高可用、弹性扩展和智能运维等云原生特性,满足多样化业务需求。
本文介绍了通过MCP(Model Context Protocol)结合通义千问大模型实现跨平台、跨服务的自动化任务处理方案。使用Qwen3-235B-A22B模型,配合ComfyUI生成图像,并通过小红书等社交媒体发布内容,展示了如何打破AI云服务的数据孤岛。具体实践包括接入FileSystem、ComfyUI和第三方媒体Server,完成从本地文件读取到生成图像再到发布的全流程。 方案优势在于高可扩展性和易用性,但也存在大模型智能化不足、MCP Server开发难度较大及安全风险等问题。未来需进一步提升模型能力、丰富应用场景并解决安全挑战,推动MCP在更多领域落地。
本文介绍了MCP(Model Context Protocol)与Qwen3模型的结合应用。MCP通过统一协议让AI模型连接各种工具和数据源,类似AI世界的“USB-C”接口。文中详细解析了MCP架构,包括Host、Client和Server三个核心组件,并说明了模型如何智能选择工具及工具执行反馈机制。Qwen3作为新一代通义千问模型,采用混合专家架构,具备235B参数但仅需激活22B,支持快速与深度思考模式,多语言处理能力覆盖119种语言。文章还展示了Qwen3的本地部署流程,以及开发和调试MCP Server与Client的具体步骤。
本文详细介绍了MCP(Model Context Protocol)客户端的开发方法,包括在没有MCP时的痛点、MCP的作用以及如何通过Spring-AI框架和原生SDK调用MCP服务。文章首先分析了MCP协议的必要性,接着分别讲解了Spring-AI框架和自研SDK的使用方式,涵盖配置LLM接口、工具注入、动态封装工具等步骤,并提供了代码示例。此外,还记录了开发过程中遇到的问题及解决办法,如版本冲突、服务连接超时等。最后,文章探讨了框架与原生SDK的选择,认为框架适合快速构建应用,而原生SDK更适合平台级开发,强调了两者结合使用的价值。
本文主要从规划的重要性、工具设计的作用、优化实践、适用场景几个方面讲述在构建多工具智能体(Agent)系统时,通过引入结构化的“思考与规划”工具和合理的提示工程,能够显著提升模型解决问题的效率和效果。
本文针对一个高并发(10W+ QPS)、低延迟(毫秒级返回)的系统因内存索引切换导致的不稳定问题,深入分析并优化了JVM参数配置。通过定位问题根源为GC压力大,尝试了多种优化手段:调整MaxTenuringThreshold、InitialTenuringThreshold、AlwaysTenure等参数让索引尽早晋升到老年代;探索PretenureSizeThreshold和G1HeapRegionSize实现索引直接分配到老年代;加速索引复制过程以及升级至JDK11使用ZGC。
LoongCollector 在日志场景中实现了全面的重磅升级,从功能、性能、稳定性等各个方面均进行了深度优化和提升,本文我们将对 LoongCollector 的升级进行详细介绍。
本文重点讲述如何快速实战上手MCP。
本文介绍了通过任务调度系统SchedulerX管理LangChain脚本的方法。LangChain是开源的大模型开发框架,支持快速构建AI应用,而SchedulerX可托管AI任务,提供脚本版本管理、定时调度、资源优化等功能。文章重点讲解了脚本管理和调度、Prompt管理、资源利用率提升、限流控制、失败重试、依赖编排及企业级可观测性等内容。同时展望了AI任务调度的未来需求,如模型Failover、Tokens限流等,并提供了相关参考链接。
深圳农商银行完成第三代核心系统全面上云,日均交易超3000万笔,峰值处理效率提升2倍以上。扎根深圳70余年,与阿里云共建“两地三中心”分布式云平台,实现高可用体系及全栈护航。此次云原生转型为行业提供可复制样本,未来将深化云计算与AI合作,推动普惠金融服务升级。
团队做 AI 助理,而我之前除了使用一些 AI 类产品,并没有大模型相关的积累。故先补齐一些基本概念,避免和团队同学沟通起来一头雾水。这篇文章是学习李宏毅老师《生成式 AI 导论》的学习笔记。
本文从RAG 2.0 面临的主要挑战和部分关键技术来展开叙事,还包括了RAG的技术升级和关键技术等。
Nacos 3.0 正式发布,作为云原生时代的基础设施级产品,不仅提升了技术能力,还以更高效、安全的方式帮助用户构建云原生AI应用架构。此次升级包括MCP Registry,围绕MCP服务管理,支持多种类型注册(如MCP Server、编排、动态调试和管理),并提供Nacos-MCP-Router实现MCP动态发现与自动安装代理。安全性方面,默认开启鉴权,并支持动态数据源密钥等零信任方案。此外,Nacos 3.0 还强化了多语言生态,覆盖主流开发语言(Python、GoLang、Rust等),并与K8S生态打通,面向全场景提供统一管理平台。
MCP服务器通过提供资源、工具、提示模板三大能力,推动AI实现多轮交互与实体操作。当前生态包含Manus、OpenManus等项目,阿里等企业积极合作,Cursor等工具已集成MCP市场。本文以贪吃蛇游戏为例,演示MCP Server实现流程:客户端连接服务端获取能力集,AI调用工具(如start_game、get_state)控制游戏,通过多轮交互实现动态操作,展示MCP在本地实践中的核心机制与挑战。
本文将分享如何使用不到 100 行的 Python 代码,实现一个具备通用智能潜力的简易 LLM Agent。你将看到整个实现过程——从核心原理、提示(Prompt)调优、工具接口设计到主循环交互,并获得完整复现代码的详细讲解。
文章结合了理论分析与实践案例,旨在帮助读者系统地认识AI Agent的核心要素、设计模式以及未来发展方向。
本文详细描述 agents.json ,涵盖了其背景、工作原理、与 OpenAPI 的关系等内容。
文章通过一个模拟侦探游戏的例子展示了AI如何通过“自我升级”和动态执行代码的能力来解决复杂问题。
作者通过深入分析、理解、归纳,最后解答了“为什么一定要做Agent”这个问题。
文章探讨了AI Agent的发展趋势,并通过一个实际案例展示了如何基于MCP(Model Context Protocol)开发一个支持私有知识库的问答系统。
本文探讨了技术挑战和解决方案,还提供了具体的实施步骤,旨在帮助企业顺利实现从传统应用到智能应用的过渡。
本文主要介绍Google于2025年4月9日发布的Agent2Agent Protocol(简称“A2A”),这是一个旨在促进不同类型智能体(Agent)之间高效沟通与协作的开放协议。
这篇文章详细介绍了进程热点追踪的概念、业务痛点、解决方案以及实际案例分析,旨在帮助开发者和运维人员快速定位和解决系统性能瓶颈问题。
本文通过100行代码看到MCP的核心原理并不复杂,但它的设计巧妙深入理解使我们能够超越简单的SDK使用,创建更强大、更灵活的AI应用集成方案。
本文是作者基于自己的学习经历重新组织的一篇更易于初心者理解的关于DeepSeek的文章,也可以说是作者阶段性的学习笔记。
本文介绍了MCP(模型上下文协议)及其在AI领域的应用前景。MCP由Anthropic公司推出,通过标准化通信协议实现AI与数据源间的安全隔离,解决了传统AI应用中的数据隐私和安全问题。文章探讨了从LLM到MCP的进化过程,并分析了其面临的挑战,如算力不足和开放性需求。Serverless技术被提出作为解决这些问题的方案,提供弹性算力和支持安全沙箱环境。最后,文章提供了如何一键部署热门MCP Server的教程,帮助开发者快速上手并体验该协议的实际应用效果。
本文分享如何基于利用MCP协议,配置MCP Server,以调用大数据开发与治理平台DataWorks Open API搭建智能体Agent,实现通过自然语言完成数据集成与数据开发等任务。文章还介绍了MCP协议的基本知识,帮助大家了解背后实现原理。大家可以通过自行配置体验数据工作流智能自动化运行。
随着技术的深入应用,如何高效利用大模型技术优化用户体验,同时应对其带来的诸多挑战?本文将从RAG的发展趋势、技术挑战、核心举措以及未来展望四个维度总结我们应对挑战的新的思路和方法。
Ray是一个开源分布式计算框架,专为支持可扩展的人工智能(AI)和Python应用程序而设计。它通过提供简单直观的API简化分布式计算,使得开发者能够高效编写并行和分布式应用程序 。Ray广泛应用于深度学习训练、大规模推理服务、强化学习以及AI数据处理等场景,并构建了丰富而成熟的技术生态。
本文探讨了MCP(Model Context Protocol)的发展及其云上托管的趋势。尽管MCP协议在2024年发布时未引起广泛关注,但随着Cursor和Manus等平台的集成,以及OpenAI对其Agent SDK的支持,MCP逐渐成为行业标准。然而,本地部署的MCP Server存在效率低、扩展复杂等问题,难以满足企业级需求。函数计算(FC)作为Serverless算力的代表,提供一键托管开源MCP Server的能力,具备成本效益、弹性扩展、简化运维等优势,解决了传统托管的核心痛点。文章还提供了多个开源MCP Server的一键部署链接,助力开发者快速上手。
本文围绕某线上客户部署DeepSeek-R1满血版模型时进行多次压测后,发现显存占用一直上升,从未下降的现象,记录了排查过程。
本文概述几种经典提示词工程方法,总结关键信息,分析其优势和局限,并分享笔者的一点思考。
本文是作者给兄弟团队做的大模型入门分享,介绍了基本大模型模式,分享出来希望帮助更多的同学参与到LLM应用建设。
本文主要讲述通过 Nacos+Higress 的方案实现0代码改造将 Agent 连接到存量应用,能够显著降低存量应用的改造成本。
本文是《5步教你创建大模型自定义插件》的下篇,主要就已有的自定义插件中的生图能力为例,演示如何生成一个图文并茂的文章。
本文分享如何使用 DeepSeek-V3-0324 和 Claude 3.5 或 3.7 绘制出高质量的图片,可以作为文章配图也可以为 PPT 配图,效率成倍增长。文章还介绍了原型图绘制、图片重绘修改和彩色报纸风的进阶案例。希望本文提供的技巧对大家有帮助,大家也可以修改提示词定制自己喜欢的风格。
本文介绍如何基于 DeepSeek 模型创建 RAG 应用,帮助大家更好地管理和利用知识,提高效率和创新能力。
本文探讨了AI在编程领域的快速发展及其对程序员职业的影响。随着AI技术的不断进步,特别是Codebase Indexing和MCP(Model Context Protocol)等技术的应用,AI已能够更好地理解企业内部知识并生成符合项目规范的代码。文章指出,未来六个月AI代码生成将形成“规范驱动→知识沉淀→协议贯通→智能执行”的闭环架构,大幅提升开发效率。同时, Anthropic CEO Dario Amodei预测,初级程序员可能在18个月内被AI取代,强调了职业规划更新的重要性。文章还对比了Function Call与MCP的技术路线,并提供了相关参考链接。
MCP Server 的实施存在着诸多挑战,特别是在认证授权、服务可靠性和可观测性方面,Higress 作为 AI 原生的 API 网关,提供了完整的开源 MCP Server 托管解决方案,实现存量 API 到 MCP 的协议转换。即将上线的 MCP 市场,将大幅降低开发者构建 MCP Server 的时间和人力成本。
Manus作为一款引发热议的AI智能体产品吸引了大量的关注。OpenManus作为一个开源项目,尝试复现了Manus的部分功能,可以作为一种“平替”来体验类似的技术。
本文探讨了MCP(Model-Calling Protocol)的兴起及其对AI生态的影响。自2月中旬起,MCP热度显著提升,GitHub Star和搜索指数均呈现加速增长趋势。MCP通过标准化协议连接大模型与外部工具,解决了碎片化集成问题,推动AI应用货币化及生态繁荣。文章分析了MCP与Function Calling的区别,指出MCP更适用于跨平台、标准化场景,而Function Calling在特定实时任务中仍具优势。此外,MCP促进了 supply端(如云厂商、大模型、中间件服务商)和消费端(终端用户)的变革,尤其以Devin和Manus为代表,分别改变了程序员和普通用户的交互方式。
本文从一个需求出发,全程记录如何进行全栈开发。
在AI技术飞速发展的今天,程序员如何借助AI突破职业瓶颈?阿里云推出的通义灵码插件提供了答案。这款智能编码助手已全面升级,支持qwen 2.5、qwen 2.5-max及qwq-plus模型,在代码生成与算法解题能力上表现卓越。它能为开发者提供详细的解题思路和完整的代码细节,让每个IDE窗口成为大厂笔试的通关秘籍。无论是暑期实习还是春招,通义灵码都能帮助解决项目问题,提升笔试能力,助力获取大厂offer。
文章探讨了如何利用多模态大模型和工程优化手段提升物流理赔业务效率。核心方案包括:通过多模态RAG技术实现图片查重,结合异步调用方法优化货损识别功能。