暂时未有相关云产品技术能力~
专注于python、算法、机器学习及深度学习等相关技术分享,欢迎关注,共同学习交流。
【阿旭机器学习实战】【31】股票价格预测案例--线性回归
【阿旭机器学习实战】【33】中文文本分类之情感分析--朴素贝叶斯、KNN、逻辑回归
【阿旭机器学习实战】【32】预测银行客户是否会开设定期存款账户--逻辑回归
【阿旭机器学习实战】【34】使用SVM检测蘑菇是否有毒--支持向量机
【阿旭机器学习实战】【29】产品广告投放实战案例---线性回归
【阿旭机器学习实战】【30】二手车价格预估--KNN回归案例
【从零开始学习深度学习】50.Pytorch_NLP项目实战:卷积神经网络textCNN在文本情感分类的运用
【从零开始学习深度学习】49.Pytorch_NLP项目实战:文本情感分类---使用循环神经网络RNN
【从零开始学习深度学习】48.Pytorch_NLP实战案例:如何使用预训练的词向量模型求近义词和类比词
【从零开始学习深度学习】47. Pytorch图片样式迁移实战:将一张图片样式迁移至另一张图片,创作自己喜欢风格的图片【含完整源码】
【从零开始学习深度学习】46. 目标检测中锚框的概念、计算方法、样本锚框标注方式及如何选取预测边界框
【python绘图库turtle实战】使用python绘图库turtle绘制:太阳花、彩虹线与小黄人【含完整源码】
【从零开始学习深度学习】43. 算法优化之Adam算法【RMSProp算法与动量法的结合】介绍及其Pytorch实现
【机器学习知识点】3. 目标检测任务中如何在图片上的目标位置绘制边界框
【从零开始学习深度学习】44. 图像增广的几种常用方式并使用图像增广训练模型【Pytorch】
【从零开始学习深度学习】41. 算法优化之RMSProp算法【基于AdaGrad算法的改进】介绍及其Pytorch实现
【从零开始学习深度学习】45. Pytorch迁移学习微调方法实战:使用微调技术进行2分类图片热狗识别模型训练【含源码与数据集】
【从零开始学习深度学习】42. 算法优化之AdaDelta算法【基于AdaGrad算法的改进】介绍及其Pytorch实现
【从零开始学习深度学习】40. 算法优化之AdaGrad算法介绍及其Pytorch实现
【从零开始学习深度学习】39. 梯度下降优化之动量法介绍及其Pytorch实现
【从零开始学习深度学习】38. Pytorch实战案例:梯度下降、随机梯度下降、小批量随机梯度下降3种优化算法对比【含数据集与源码】
【从零开始学习深度学习】37. 深度循环神经网络与双向循环神经网络简介
【从零开始学习深度学习】36. 门控循环神经网络之长短期记忆网络(LSTM)介绍、Pytorch实现LSTM并进行训练预测
【从零开始学习深度学习】35. 门控循环神经网络之门控循环单元(gated recurrent unit,GRU)介绍、Pytorch实现GRU并进行训练预测
【从零开始学习深度学习】34. Pytorch-RNN项目实战:RNN创作歌词案例--使用周杰伦专辑歌词训练模型并创作歌曲【含数据集与源码】
【从零开始学习深度学习】33.语言模型的计算方式及循环神经网络RNN简介
【从零开始学习深度学习】32. 卷积神经网络之稠密连接网络(DenseNet)介绍及其Pytorch实现
【从零开始学习深度学习】31. 卷积神经网络之残差网络(ResNet)介绍及其Pytorch实现
【从零开始学习深度学习】29.卷积神经网络之GoogLeNet模型介绍及用Pytorch实现GoogLeNet模型【含完整代码】
【从零开始学习深度学习】30. 神经网络中批量归一化层(batch normalization)的作用及其Pytorch实现
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】27.卷积神经网络之VGG11模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】25.卷积神经网络之LeNet模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】17. Pytorch中模型参数的访问、初始化和共享方法
【从零开始学习深度学习】24.神经网络中池化层的作用:最大池化与平均池化
【从零开始学习深度学习】22. 卷积神经网络(CNN)中填充(padding)与步幅(stride)详解,填充、步幅、输入及输出之间的关系
【从零开始学习深度学习】23. CNN中的多通道输入及多通道输出计算方式及1X1卷积层介绍
【从零开始学习深度学习】21. 卷积神经网络(CNN)之二维卷积层原理介绍、如何用卷积层检测物体边缘
一文看懂卷积运算(convolution)与互相关运算(cross-correlation)的区别
【从零开始学习深度学习】18. Pytorch中自定义层的几种方法:nn.Module、ParameterList和ParameterDict
【从零开始学习深度学习】19. Pytorch中如何存储与读取模型:torch.save、torch.load与state_dict对象
【从零开始学习深度学习】16. Pytorch中神经网络模型的构造方法:Module、Sequential、ModuleList、ModuleDict的区别
【从零开始学习深度学习】20. Pytorch中如何让参数与模型在GPU上进行计算
【阿旭机器学习实战】【28】自己动手写一个单词拼写检查器---基于贝叶斯公式
深度学习入门(5)如何对神经网络模型训练结果进行评价
深度学习入门(4)【深度学习实战】无框架实现两层神经网络的搭建与训练过程
深度学习入门(3)神经网络参数梯度的计算方式
深度学习入门(2)神经网络
深度学习入门(1)感知机