暂无个人介绍
原子性:指事务包含的所有操作要么全部成功,要么全部失败回滚,因此事务的操作如果成功就必须完全应用到数据库,如果操作失败则不能对数据库有任何影响。 一致性:指事务开始前和结束后,数据库的完整性约束没有被破坏。 隔离性:指当多个用户并发访问数据库时,比如操作同一张表时,数据库为每一个用户开启的事务,不能被其他事务的操作所干扰,多个并发事务之间要相互隔离。 持久性:指一个事务一旦被提交了,那么对数据库中的数据的改变就是永久性的,即便是在数据库系统遇到故障的情况下也不会丢失提交事务的操作。
死 信交换机和正常的交换机没有什么不同 , 如果一个包含死信的队列配置了dead-letter-exchange属性,指定了一个交换机,那么队列中的死信就会投递到这个交换机中,而这个交换机称为死信交换机 为队列绑定死信交换机 , 只需要设置队列属性 dead-letter-exchange即可
● 普通索引:最基本的索引,没有任何限制。 ● 唯一索引:索引列的值必须唯一,但可以有空值。可以创建组合索引,则列值的组合必须唯一。 ● 主键索引:是特殊的唯一索引,不可以有空值,且表中只存在一个该值。 ● 组合索引:多列值组成一个索引,用于组合搜索,效率高于索引合并。 ● 全文索引:对文本的内容进行分词,进行搜索。
表锁: 不会出现死锁,发生锁的冲突几率高,并发性低。 存储引擎在进行SQL数据读写请求前,会对涉及到的表进行加锁。 其中锁分为共享读锁和独占写锁:读锁会阻塞写,写锁会阻塞读和写。 行级锁: 会出现死锁,发生锁的冲突几率低,并发性高。 InnoDB引擎支持行锁,与Oracle不同,MySQL的行锁是通过索引加载的,也就是说,行锁是加在索引响应的行上的,要是对应的SQL语句没有走索引,则会全表扫描,行锁则无法实现,取而代之的是表锁,此时其它事务无法对当前表进行更新或插入操作。 行级锁注意事项: 行级锁必须有索引才能实现,否则会自动锁全表,那就不是行锁了。 两个事务不能锁同一个索引。 in
选择使用RabbitMQ是因为RabbitMQ的功能比较丰富 , 支持各种消息收发模式(简单队列模式, 工作队列模式 , 路由模式 , 直接模式 , 主题模式等) , 支持延迟队列 , 惰性队列而且天然支持集群, 保证服务的高可用, 同时性能非常不错 , 社区也比较活跃, 文档资料非常丰富 使用MQ有很多好处: ● 吞吐量提升:无需等待订阅者处理完成,响应更快速 ● 故障隔离:服务没有直接调用,不存在级联失败问题 ● 调用间没有阻塞,不会造成无效的资源占用 ● 耦合度极低,每个服务都可以灵活插拔,可替换 ● 流量削峰:不管发布事件的流量波动多大,都由Broker接收,订阅者可以按照自己的速度去
Redis分布式锁主要依靠一个SETNX指令实现的 , 这条命令的含义就是“SET if Not Exists”,即不存在的时候才会设置值。 只有在key不存在的情况下,将键key的值设置为value。如果key已经存在,则SETNX命令不做任何操作。 这个命令的返回值如下。 ● 命令在设置成功时返回1。 ● 命令在设置失败时返回0。 假设此时有线程A和线程B同时访问临界区代码,假设线程A首先执行了SETNX命令,并返回结果1,继续向下执行。而此时线程B再次执行SETNX命令时,返回的结果为0,则线程B不能继续向下执行。只有当线程A执行DELETE命令将设置的锁状态删除时,线程B才会成功执行S
springboot项目在启动的时候, 首先会执行启动引导类里面的SpringApplication.run(AdminApplication.class, args)方法 这个run方法主要做的事情可以分为三个部分 : 第一部分进行SpringApplication的初始化模块,配置一些基本的环境变量、资源、构造器、监听器 第二部分实现了应用具体的启动方案,包括启动流程的监听模块、加载配置环境模块、及核心的创建上下文环境模块 第三部分是自动化配置模块,该模块作为springboot自动配置核心,在后面的分析中会详细讨论
在使用RabbitMQ进行消息收发的时候, 如果发送失败或者消费失败会自动进行重试, 那么就有可能会导致消息的重复消费 , 具体的解决方案其实非常简单, 为每条消息设置一个唯一的标识id , 将已经消费的消息记录保存起来 , 后期再进行消费的时候判断是否已经消费过即可 , 如果已经消费过则不消费 , 如果没有消费过则正常消费
微服务就是一个独立的职责单一的服务应用程序,一个模块 1.优点:松耦合,聚焦单一业务功能,无关开发语言,团队规模降低 , 扩展性好, 天然支持分库2.缺点:随着服务数量增加,管理复杂,部署复杂,服务器需要增多,服务通信和调用压力增大
Spring Boot的核心注解是@SpringBootApplication , 他由几个注解组成 : ● @SpringBootConfiguration: 组合了- @Configuration注解,实现配置文件的功能; ● @EnableAutoConfiguration:打开自动配置的功能,也可以关闭某个自动配置的选项 ● @ComponentScan:Spring组件扫描
当对表中的数据进行增加、删除、修改时,同时需要动态维护索引,降低了整体的维护速度。 索引需要占据物理空间,如果要建立聚簇索引,那么需要的空间就会更大,因为会将数据存储于叶子节点。 创建索引和维护索引要耗费时间,这种时间随着数据量的增加而增加
Redis集群采用的算法是哈希槽分区算法。Redis集群中有16384个哈希槽(槽的范围是 0 -16383,哈希槽),将不同的哈希槽分布在不同的Redis节点上面进行管理,也就是说每个Redis节点只负责一部分的哈希槽。在对数据进行操作的时候,集群会对使用CRC16算法对key进行计算并对16384取模(slot = CRC16(key)%16383),得到的结果就是 Key-Value 所放入的槽,通过这个值,去找到对应的槽所对应的Redis节点,然后直接到这个对应的节点上进行存取操作
服务调用过程中的负载均衡一般使用SpringCloud的Ribbon 组件实现 , Feign的底层已经自动集成了Ribbon , 使用起来非常简单 客户端调用的话一般会通过网关, 通过网关实现请求的路由和负载均衡
缓存雪崩/缓存失效 指的是大量的缓存在同一时间失效,大量请求落到数据库 导致数据库瞬间压力飙升。 造成这种现象的 原因是,key的过期时间都设置成一样了。 解决方案是,key的过期时间引入随机因素
在SpringBoot项目的启动引导类上都有一个注解@SpringBootApplication 这个注解是一个复合注解, 其中有三个注解构成 , 分别是 ● @SpringBootConfiguration : 是@Configuration的派生注解 , 标注当前类是一个SpringBoot的配置类 ● @ComponentScan : 开启组件扫描, 默认扫描的是当前启动引导了所在包以及子包 ● @EnableAutoConfiguration : 开启自动配置(自动配置核心注解) 2.在@EnableAutoConfiguration注解的内容使用@Import注解导入了一个AutoC
缓存击穿是指缓存中没有但数据库中有的数据(一般是缓存时间到期),这时由于并发用户特别多,同时读缓存没读到数据,又同时去数据库去取数据,引起数据库压力瞬间增大 解决方案 : ● 热点数据提前预热 ● 设置热点数据永远不过期。 ● 加锁 , 限流
缓存穿透是指查询一条数据库和缓存都没有的一条数据,就会一直查询数据库,对数据库的访问压力就会增大,缓存穿透的解决方案 有以下2种解决方案 : ● 缓存空对象:代码维护较简单,但是效果不好。 ● 布隆过滤器:代码维护复杂,效果很好
聚簇索引并不是单独的索引类型,而是一种数据存储方式。 B+树索引分为聚簇索引和非聚簇索引,主键索引就是聚簇索引的一种,非聚簇索引有复合索引、前缀索引、唯一索引。 在innodb存储引擎中,表数据本身就是按B+树组织的一个索引结构,聚簇索引就是按照每张表的主键构造一颗B+树,同时叶子节点中存放的就是整张表的行记录数据,也将聚簇索引的叶子节点成为数据页。 Innodb通过主键聚集数据,如果没有定义主键,innodb会选择非空的唯一索引代替。如果没有这样的索引,innodb会隐式的定义一个主键来作为聚簇索引。 非聚簇索引又称为辅助索引,InnoDB访问数据需要两次查找,辅助索引叶子节点存储的不再是行
非空字段:索引字段不能有NULL,如果有NULL值将不会包含在索引中。 索引字段越小越好:数据库的数据存储以页为单位一页存储的数据越多一次IO操作获取的数据越大效率越高。 唯一、不为空、经常被查询的字段 的字段适合建索引。 取值离散大的字段:(变量各个取值之间的差异程度)的列放到联合索引的前面,可以通过count()函数查看字段的差异值,返回值越大说明字段的唯一值越多字段的离散程度高。 限制创建索引的数量:对于存在大量更新操作的表,索引一般不超过3个。
● closed:关闭状态,断路器放行所有请求,并开始统计异常比例、慢请求比例。超过阈值则切换到open状态 ● open:打开状态,服务调用被熔断,访问被熔断服务的请求会被拒绝,快速失败,直接走降级逻辑。Open状态5秒后会进入half-open状态 ● half-open:半开状态,放行一次请求,根据执行结果来判断接下来的操作。 ○ 请求成功:则切换到closed状态 ○ 请求失败:则切换到open状态
关系型数据库是依据关系模型来创建的数据库,所谓关系模型就是“一对一”、“一对多”、“对多对”等。常见的关系型数据库有Oracle、MySQL、SQL Server等。非关系型数据库主要基于“非关系型模型”,其中非关系型模型有:列模型、键值对模型、文档类模型。比如redis属于键值对模型。 MongoDB属于文档模型 关系型数据库的优点: ● 易于维护:都是使用表结构,格式一致。 ● 使用方便:SQL语言通用,可用于复杂查询。 ● 复杂操作:支持SQL,可用于一个表以及多个表之间非常复杂的查询。 关系型数据库的缺点: ● 读写性能比较差,尤其是海量数据的高效率读写。 ● 固定的表结构,灵活
消息从发送,到消费者接收,会经理多个过程 , 其中的每一步都可能导致消息丢失 针对这些问题,RabbitMQ分别给出了解决方案: ● 消息发送到交换机丢失 : 发布者确认机制publisher-confirm消息发送到交换机失败会向生产者返回ACK , 生产者通过回调接收发送结果 , 如果发送失败, 重新发送, 或者记录日志人工介入 ● 消息从交换机路由到队列丢失 : 发布者回执机制publisher-return消息从交换机路由到队列失败会向生产者返回失败原因 , 生产者通过回调接收回调结果 , 如果发送失败, 重新发送, 或者记录日志人工介入 ● 消息保存到队列中丢失 : MQ持久化(交
1. 先更新Mysql,再更新Redis,如果更新Redis失败,可能仍然不⼀致 2. 先删除Redis缓存数据,再更新Mysql,再次查询的时候在将数据添加到缓存中 这种⽅案能解决1 ⽅案的问题,但是在⾼并发下性能较低,⽽且仍然会出现数据不⼀致的问题,⽐如线程1删除了 Redis缓存数据,正在更新Mysql,此时另外⼀个查询再查询,那么就会把Mysql中⽼数据⼜查到 Redis中 1. 使用MQ异步同步, 保证数据的最终一致性 我们项目中会根据业务情况 , 使用不同的方案来解决Redis和Mysql的一致性问题 : 1. 对于一些一致性要求不高的场景 , 不做处理例如 : 用户行为数据 ,
1. 主从复制集群 : 读写分离, 一主多从 , 解决高并发读的问题 2. 哨兵集群 : 主从集群的结构之上 , 加入了哨兵用于监控集群状态 , 主节点出现故障, 执行主从切换 , 解决高可用问题 3. Cluster分片集群 : 多主多从 , 解决高并发写的问题, 以及海量数据存储问题 , 每个主节点存储一部分集群数据
MYSQL存储引擎有很多, 常用的就二种 : MyISAM和InnerDB , 者两种存储引擎的区别 ; ● MyISAM支持256TB的数据存储 , InnerDB只支持64TB的数据存储 ● MyISAM 不支持事务 , InnerDB支持事务 ● MyISAM 不支持外键 , InnerDB支持外键
1. 惰性删除 :只会在取出 key 的时候才对数据进行过期检查。这样对 CPU 最友好,但是可能会造成太多过期 key 没有被删除。数据到达过期时间,不做处理。等下次访问该数据时,我们需要判断 a. 如果未过期,返回数据 b. 发现已过期,删除,返回nil 2. 定期删除 : 每隔一段时间抽取一批 key 执行删除过期 key 操作。并且,Redis 底层会通过限制删除操作执行的时长和频率来减少删除操作对 CPU 时间的影响。默认情况下 Redis 定期检查的频率是每秒扫描 10 次,用于定期清除过期键。当然此值还可以通过配置文件进行设置,在 redis.conf 中修改配置“hz”
Redis 有 5 种基础数据结构,它们分别是:string(字符串)、list(列表)、hash(字典)、set(集 合) 和 zset(有序集合)
覆盖索引是指只需要在一棵索引树上就能获取SQL所需的所有列数据 , 因为无需回表查询效率更高 实现覆盖索引的常见方法是:将被查询的字段,建立到联合索引里去。 执行如下查询语句 : select name,age from user where name='Alice' 因为要查询 name和 age二个字段 , 那么我们可以建立组合索引 create index index_name_age on user(name,age) 那么索引存储结构如下 : 这种情况下, 执行select name,age from user where name='Alice' , 会先根据name='Ali
Redis 的主从同步(replication)机制,允许 Slave 从 Master 那里,通过网络传输拷贝到完整的数据备份,从而达到主从机制。 主数据库可以进行读写操作,当发生写操作的时候自动将数据同步到从数据库,而从数据库一般是只读的,并接收主数据库同步过来的数据。一个主数据库可以有多个从数据库,而一个从数据库只能有一个主数据库。 主从数据同步主要分二个阶段 : 第一阶段 : 全量复制阶段 ● slave节点请求增量同步 ● master节点判断replid,发现不一致,拒绝增量同步 ● master将完整内存数据生成RDB,发送RDB到slave ● slave清空本地数据,加载m
Redis 提供 8 种数据淘汰策略: 淘汰易失数据(具有过期时间的数据) 1. volatile-lru(least recently used):从已设置过期时间的数据集(server.db[i].expires)中挑选最近最少使用的数据淘汰 2. volatile-lfu(least frequently used):从已设置过期时间的数据集(server.db[i].expires)中挑选最不经常使用的数据淘汰 3. volatile-ttl:从已设置过期时间的数据集(server.db[i].expires)中挑选将要过期的数据淘汰 4. volatile-random:从已设置过期
Redis 提供了两种方式,实现数据的持久化到硬盘。 1. RDB 持久化(全量),是指在指定的时间间隔内将内存中的数据集快照写入磁盘。 2. AOF持久化(增量),以日志的形式记录服务器所处理的每一个写、删除操作 RDB和AOF一起使用, 在Redis4.0版本支持混合持久化方式 ( 设置 aof-use-rdb-preamble yes )
需要创建索引情况 1. 主键自动建立主键索引 2. 频繁作为查询条件的字段应该创建索引 3. 多表关联查询中,关联字段应该创建索引 (on 两边都要创建索引) 4. 查询中排序的字段,应该创建索引 5. 频繁查找字段 , 应该创建索引 6. 查询中统计或者分组字段,应该创建索引 不要创建索引情况 1. 表记录太少 2. 经常进⾏行行增删改操作的表 3. 频繁更新的字段 4. where条件里使用频率不高的字段
主要有一下四种类加载器: 1. 启动类加载器(Bootstrap ClassLoader)用来加载java核心类库,无法被java程序直接引用。 2. 扩展类加载器(extensions class loader):它用来加载 Java 的扩展库。Java 虚拟机的实现会提 供一个扩展库目录。该类加载器在此目录里面查找并加载 Java 类。 3. 系统类加载器(system class loader):它根据 Java 应用的类路径(CLASSPATH)来加载 Java 类。一般来说,Java 应用的类都是由它来完成加载的。可以通过 ClassLoader.getSystemClassLoa
@RequestMapping:用于处理请求 url 映射的注解,可用于类或方法上。用于类上,则表示类中 的所有响应请求的方法都是以该地址作为父路径。 @RequestBody:注解实现接收http请求的json数据,将json转换为java对象。 @ResponseBody:注解实现将conreoller方法返回对象转化为json对象响应给客户。 @Controller:控制器的注解,表示是表现层,不能用用别的注解代替 @RestController : 组合注解 @Conntroller + @ResponseBody @GetMapping , @PostMapping , @Put
Map接口和Collection接口是所有集合框架的父接口: 1. Collection接口的子接口包括:Set接口和List接口 2. Map接口的实现类主要有:HashMap、TreeMap、Hashtable、ConcurrentHashMap以及 Properties等 3. Set接口的实现类主要有:HashSet、TreeSet、LinkedHashSet等 4. List接口的实现类主要有:ArrayList、LinkedList、Stack以及Vector等
MYSQL索引主要有 : 单列索引 , 组合索引和空间索引 , 用的比较多的就是单列索引和组合索引 , 空间索引我这边没有用到过 单列索引 : 在MYSQL数据库表的某一列上面创建的索引叫单列索引 , 单列索引又分为 ● 普通索引:MySQL中基本索引类型,没有什么限制,允许在定义索引的列中插入重复值和空值,纯粹为了查询数据更快一点。 ● 唯一索引:索引列中的值必须是唯一的,但是允许为空值 ● 主键索引:是一种特殊的唯一索引,不允许有空值 ● 全文索引: 只有在MyISAM引擎、InnoDB(5.6以后)上才能使⽤用,而且只能在CHAR,VARCHAR,TEXT类型字段上使⽤用全⽂文索引。
重载:发生在同一个类中,方法名相同参数列表不同(参数类型不同、个数不同、顺序不同),与 方法返回值和访问修饰符无关,即重载的方法不能根据返回类型进行区分 重写:发生在父子类中,方法名、参数列表必须相同,返回值小于等于父类,抛出的异常小于等于 父类,访问修饰符大于等于父类(里氏代换原则);如果父类方法访问修饰符为private则子类中 就能是重写。
因为Spring事务是基于代理来实现的,所以某个加了@Transactional的⽅法只有是被代理对象调⽤时, 那么这个注解才会⽣效 , 如果使用的是被代理对象调用, 那么@Transactional会失效 同时如果某个⽅法是private的,那么@Transactional也会失效,因为底层cglib是基于⽗⼦类来实现 的,⼦类是不能重载⽗类的private⽅法的,所以⽆法很好的利⽤代理,也会导致@Transactianal失效 如果在业务中对异常进行了捕获处理 , 出现异常后Spring框架无法感知到异常, @Transactional也会失效
1. 数据结构实现:ArrayList 是动态数组的数据结构实现,而 LinkedList 是双向链表的数据结构实 现。 2. 随机访问效率:ArrayList 比 LinkedList 在随机访问的时候效率要高,因为 LinkedList 是线性的数 据存储方式,所以需要移动指针从前往后依次查找。 3. 增加和删除效率:在非首尾的增加和删除操作,LinkedList 要比 ArrayList 效率要高,因为 ArrayList 增删操作要影响数组内的其他数据的下标。 4. 内存空间占用:LinkedList 比 ArrayList 更占内存,因为 LinkedList 的节点除了存储数
Spring AOP中的动态代理主要有两种方式,JDK动态代理和CGLIB动态代理: ● JDK动态代理只提供接口的代理,不支持类的代理Proxy.newProxyInstance(类加载器, 代理对象实现的所有接口, 代理执行器) ● CGLIB是通过继承的方式做的动态代理 , 如果某个类被标记为final,那么它是无法使用 CGLIB做动态代理的。Enhancer.create(父类的字节码对象, 代理执行器)
使用synchronized关键字 使用Lock锁 synchronized和Lock有什么区别 ? 首先synchronized是Java内置关键字,在JVM层面,Lock是个Java类; synchronized 可以给类、方法、代码块加锁;而 lock 只能给代码块加锁。 synchronized 不需要手动获取锁和释放锁,使用简单,发生异常会自动释放锁,不会造成死锁; 而 lock 需要自己加锁和释放锁,如果使用不当没有 unLock()去释放锁就会造成死锁。 通过 Lock 可以知道有没有成功获取锁,而 synchronized 却无法办到。
== : 它的作用是判断两个对象的地址是不是相等。即,判断两个对象是不是同一个对象。(基本数 据类型 == 比较的是值,引用数据类型 == 比较的是内存地址) equals() : 它的作用也是判断两个对象是否相等。
IOC : 控制翻转 , 它把传统上由程序代码直接操控的对象的调用权交给容 器,通过容器来实现对象组件的装配和管理。所谓的“控制反转”概念就是对组件对象控制权的转 移,从程序代码本身转移到了外部容器。 DI : 依赖注入,在我们创建对象的过程中,把对象依赖的属性注入到我们的类中。
1. 判断键值对数组table[i]是否为空或为null,否则执行resize()进行扩容; 2. 根据键值key计算hash值得到插入的数组索引i,如果table[i]==null,直接新建节点添加,转向 ⑥,如果table[i]不为空,转向③; 3. 判断table[i]的首个元素是否和key一样,如果相同直接覆盖value,否则转向④,这里的相同指的 是hashCode以及equals; 4. 判断table[i] 是否为treeNode,即table[i] 是否是红黑树,如果是红黑树,则直接在树中插入键值 对,否则转向5; 5. 遍历table[i],判断链表长度是否大于8,大于8的
corePoolSize 核心线程数量 maximumPoolSize 最大线程数量 keepAliveTime 线程保持时间,N个时间单位 unit 时间单位(比如秒,分) workQueue 阻塞队列 threadFactory 线程工厂 handler 线程池拒绝策略