数学
├─中南大学│ 第3卷第81期_中南大学2011年数学分析考研试题参考解答│ 第4卷第266期_中南大学2013年高等代数考研试题参考解答│ ├─中国人民大学│ 第5卷第370期_中国人民大学2003年高等代数考研试题参考解答│ 第5卷第371期_中...
\tree/f >c.txt \dir/s/b >c.txt
中文的习题解答中国人看懂, 英文的习题解答外国人能看懂. 接到好几个老外的邮件了...
设 $A,B\in \bbR^{n\times n}$ 的特征值都是实数, 则存在正交阵 $P,Q$ 使得 $PAQ$, $PBQ$ 为上三角阵.
设 $A,B$ 都是实正定矩阵, 则 $A^{-1}B$ 的特征值都是正实数.
如果 $A$ 可逆或 $D$ 可逆, 则 $$\bex \sev{\ba{cc} A&B\\ C&D \ea}=|A|\cdot |D-CA^{-1}B| =|D|\cdot |A-BD^{-1}C|. \eex$$
若 $A\in \bbR^{m\times n}$ 列满秩, 则 $A(A^TA)^{-1}A^T$ 是幂等矩阵, 其特征值为 $1$ 或 $0$, 且存在正交阵 $Q$, 使得 $$\bex Q^T[A(A^TA)^{-1}A^T]Q=\sex{E_n\atop 0}. \eex$$
今闻高二同桌悄然去世. 而前几年已有一位同学去世. 高中也不知道好不好, 有个高考, 让人有了机会出去. 但为此, 我却付出了 "腰椎间盘突出" 的苦难. 高中毕业在家自己还以为是肾有问题...
积分第一中值定理. 若 $f$ 在 $[a,b]$ 上连续, 则 $$\bex \exists\ \xi\in (a,b),\st \int_a^b f(x)\rd x=f(\xi)(b-a). \eex$$ 推广的积分第一中值定理.
设幂级数 $\dps{g(x)=\sum_{n=0}^\infty a_nx^n}$ 在 $|x|N\ra |s_k-s|
1区:该期刊的影响因子排名位于其所在学科排名的前5% 2区:该期刊的影响因子排名位于其所在学科排名的前20%但未进入5% 3区:该期刊的影响因子排名位于其所在学科排名的前50%但未进入20%的 4区:该期刊的影响因子排名位于其所在学科排名的50%
四川康定发生地震了. 雅安, 汶川. 多灾多难的人...活着真的不容易.
Given a basis $U=(u_1,\cdots,u_n)$ not necessarily orthonormal, in $\scrH$, how would you compute the biorthogonal basis $\sex{v_1,\cdots,v_n}$? Find ...
Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$, $1\leq j\leq k$, can be found so that $a_{ij}=\sef{x_i,x_j}$ for all $i,j$.
(Schur's Theorem) If $A$ is positive, then $$\bex \per(A)\geq \det A. \eex$$ Solution. By Exercise I.
Prove that for any matrices $A,B$ we have $$\bex |\per (AB)|^2\leq \per (AA^*)\cdot \per (B^*B). \eex$$ (The corresponding relation for determinants is an easy equality.
Prove that for any vectors $$\bex u_1,\cdots,u_k,\quad v_1,\cdots,v_k, \eex$$ we have $$\bex |\det(\sef{u_i,v_j})|^2 \leq \det\sex{\sef{u_i,u_j}}\cdot...
Let $A$ be a nilpotent operator. Show how to obtain, from aJordan basis for $A$, aJordan basis of $\wedge^2A$.
Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is equal to the permanent of the $k\times k$ matrix $\sex{\sef{x_i,y_j}}$.
If $\dim \scrH=3$, then $\dim \otimes^3\scrH =27$, $\dim \wedge^3\scrH =1$ and $\dim \vee^3\scrH =10$.
Let $\scrM$ be a $p$-dimensional subspace of $\scrH$ and $\scrN$ its orthogonal complement. Choosing $j$ vectors from $\scrM$ and $k-j$ vectors from $...
The elementary tensors $x\otimes \cdots \otimes x$, with all factors equal, are all in the subspace $\vee^k\scrH$.
Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex$$ is equal to the determinant of the $k\times k$ matrix $\sex{\sef{x_i,y_j}}$.
在 Rajendra Bhatia 的 Matrix Analysis 中, Exercise I.5.8 说: Prove that for any matrices $A,B$ we have $$\bex |\per (AB)|^2\leq \per (AA^*)\cdot \per (B^*B).
Permanent[m_List] := With[{v = Array[x, Length[m]]}, Coefficient[Times @@ (m.v), Times @@ v]] 参考资料: http://mathworld.wolfram.com/Permanent.html
(from X.L. Zhen) 计算二重积分 $$\bex \iint_{\bbR^2}e^{-(x^2+xy+y^2)}\rd x\rd y. \eex$$ 解答: $$\beex \bea \iint_{\bbR^2}e^{-(x^2+xy+y^2)}\rd x\rd y &=\iin...
expunge 擦掉; 除去; 删去; 消除 1. The experience was something he had tried to expunge from his memory. 他曾努力将那段经历从记忆中抹去。
Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographically ordered basis on the space of tensors, the matri...
Suppose it is known that $\scrM$ is an invariant subspace for $A$. What invariant subspaces for $A\otimes A$ can be obtained from this information alone? Solution.
(1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK)$ in which the elementary tensor $k\otimes h^*$co...
Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition that a vector $w$ mush satisfy in order that the bil...
$$\bex \sin(x+y)=\sin x\cos y+\cos x\sin y. \eex$$ Ref. [Proof Without Words: Sine Sum Identity, The College Mathematics Journal].
设 $\sed{a_k}_{k=1}^n$ 为等差数列, 则 $$\bex a_1+\cdots+a_n=\frac{n(a_1+a_n)}{2}. \eex$$ Ref. [Proof Without Words: Partial Sums of an Arithmetic Sequence, The College Mathematics Journal].
$$\bex \frac{\sin x}{x}\nearrow. \eex$$ Ref. [Proof Without Words: Monotonicity of $\sin x/x$ on $(0,\pi/2)$, The College Mathematics Journal]
$$\bex \frac{\tan x}{x}\nearrow. \eex$$ Ref. [Proof Without Words: Monotonicity of $\tan x/x$ on $(0,\pi/2)$, The College Mathematics Journal].
$$\bex \sqrt{x^2+x+1}+ \sqrt{y^2+y+1} +\sqrt{x^2-x+1}+ \sqrt{y^2-y+1}\geq 2(x+y). \eex$$ Ref. [Proof Without Words: An Algebraic Inequality, The College Mathematics Journal].
For $n\geq 1$ to be an integer, $$\bex (2n)^2-(2n+1)^2+\cdots+(4n)^2 =-(4n+1)^2+\cdots+(6n)^2, \eex$$ $$\bex (2n+1)^2-(2n+2)^2+\cdots+(4n-1)^2 =-(4n)^2+(4n+1)^2-\cdots+(6n-1)^2.
每个有限几何的线的条数 $\geq$ 点的个数. 若一个有限几何的线数 $=$ 点数, 则任意两条线都相交.
多项式 $$\bex p(z)=z^n+a_{n-1}x^{n-1}+\cdots+a_0 \eex$$ 的根的估计.
Hilbert 零点定理: 设 $\bbF$ 是一个代数闭域, $L$ 是 $\bbF[x_1,\cdots,x_n]$ 的一个真理想, 则 $$\bex \exists\ (a_1,\cdots,a_n)\in\bbF^n\ra f(a_1,\cdots,a_n)=0,\quad\forall\ f\in L.
1. 代数数: $\al\in\bbC$ 称为代数数, 如果它是某个系数为有理数的非零多项式的根. 2. 代数数全体构成一个域. (利用伙伴矩阵, 张量积很容易证明) 3. 代数整数: $\al\in\bbC$ 称为代数整数, 如果它是某个首一整系数多项式的根.
友谊定理: 如果在一群人中任何两个人都恰好有一个共同的朋友, 那么有一个人是每个人的朋友.
$$\bex \forall\ m\in \bbZ^+\ra \sqrt{m}\in (\bbR\bs \bbQ)\cup \bbZ^+. \eex$$
For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and its inverse is $$\bex \sex{\ba{cc} I&-A\\ 0&I \ea}.
If $A$ is a contraction, show that $$\bex A^*(I-AA^*)^{1/2}=(I-A^*A)^{1/2}A^*. \eex$$ Use this to show that if $A$ is a contraction on $\scrH$, then t...
Let $A=A_1\oplus A_2$. Show that (1). $W(A)$ is the convex hull of $W(A_1)$ and $W(A_2)$; i.e., the smallest convex set containing $W(A_1)\cup W(A_2)$.
(1). The numerical radius defines a norm on $\scrL(\scrH)$. (2). $w(UAU^*)=w(A)$ for all $U\in \U(n)$.
(1). When $A$ is normal, the set $W(A)$ is the convex hull of the eigenvalues of $A$. For nonnormal matrices, $W(A)$ may be bigger than the convex hull of its eigenvalues.