AI研究者手札_社区达人页

个人头像照片
AI研究者手札
已加入开发者社区1411

勋章 更多

个人头像照片
专家博主
专家博主
个人头像照片
星级博主
星级博主
个人头像照片
乘风问答官
乘风问答官
个人头像照片
技术博主
技术博主
个人头像照片
开发者认证勋章
开发者认证勋章
个人头像照片
一代宗师
一代宗师

成就

已发布298篇文章
160条评论
已回答875个问题
26条评论
已发布0个视频
github地址

技术能力

兴趣领域
  • 开发框架
  • 项目管理
  • 机器学习/深度学习
  • 云计算
  • 云安全
  • 网络架构
擅长领域
  • Python
    初级

    能力说明:

    了解Python语言的基本特性、编程环境的搭建、语法基础、算法基础等,了解Python的基本数据结构,对Python的网络编程与Web开发技术具备初步的知识,了解常用开发框架的基本特性,以及Python爬虫的基础知识。

技术认证

资深技术专家。主攻技术开发,擅长分享、写文、测评。

暂无精选文章
暂无更多信息

2025年09月

  • 09.07 13:17:18
    发表了文章 2025-09-07 13:17:18

    人体跌倒识别检测项目|全流程源码+数据集+可视化界面+一键训练部署

    本项目基于 YOLOv8 模型和 PyQt5 图形界面工具,构建了一个 人体跌倒识别系统,旨在通过计算机视觉技术监测老年人等群体的跌倒行为。项目提供了完整的 源码、数据集、训练流程、以及开箱即用的检测程序,确保用户能够快速搭建并部署自己的跌倒识别系统。
  • 09.07 01:51:11
    发表了文章 2025-09-07 01:51:11

    最全DIY嵌入式智能手表 | STM32可编程多功能手表 [开源分享]

    随着技术的不断进步和用户需求的不断变化,这款STM32可编程多功能手表有着广阔的发展潜力。未来,我们可以加入更多的传感器模块,如心率传感器、温湿度传感器等,进一步扩展手表的功能,提升其在健康监测、运动跟踪等领域的应用。同时,通过开源平台的支持,开发者可以贡献自己的创意和代码,推动手表功能的持续创新与优化。
  • 09.04 12:59:35
    发表了文章 2025-09-04 12:59:35

    目标检测数据集 — 田间杂草检测数据集(4000张图片已划分、已标注)

    未来,随着数据量的进一步扩充,可以细分更多类别,如不同种类的杂草与不同生长阶段的作物,从而实现更精细化的识别与管理。通过该数据集,研究人员与开发者可以为 农业现代化与智慧农业 提供坚实的数据基础,加速农业 AI 技术在实际生产中的落地。

2025年08月

  • 08.31 15:15:44
    发表了文章 2025-08-31 15:15:44

    基于YOLO的钢筋目标检测系统 | 钢筋计数识别与检测【完整源码+部署】

    本项目围绕建筑行业中常见的钢筋识别与计数问题,基于先进的 YOLOv8 深度学习模型,构建了一个高效、稳定、可视化的智能检测系统。项目不仅实现了多场景支持(图片、视频、实时流)与目标自动计数,还通过 PyQt5 提供了友好的用户交互界面,极大地降低了使用门槛。结合完整的训练流程、可复用的数据集与权重,系统具备良好的扩展性与工程适配能力,适合教学科研、施工监控与智能运维等多类应用场景。未来,该系统也可进一步拓展为多类建材检测平台,为智能工地提供视觉 AI 支撑。
  • 08.30 17:05:30
    发表了文章 2025-08-30 17:05:30

    基于YOLOv8的X光安检图像智能检测系统:八类违禁品/可疑物精准识别与实战部署

    本项目基于最新的YOLOv8深度学习模型,构建了一套轻量、高效、可视化的 X光安检图像智能检测系统,可精准识别电池、刀具、打火机等八类常见违禁品/可疑物,结合图形界面,支持一键识别与部署,大幅提升安检自动化水平。
  • 08.28 00:21:20
    发表了文章 2025-08-28 00:21:20

    基于STM32的人体健康监测系统设计与实现(温度、心率、老人摔倒检测)【开源免费】

    本文介绍了一个基于 STM32 微控制器 的健康监测系统,涵盖了 温度采集、心率监测、跌倒检测 等核心功能,并通过蓝牙实现数据传输与报警提醒。该系统在家庭养老、运动监控、医疗健康等场景具有广阔的应用前景。未来可以结合 AI+物联网 技术,进一步提升智能化和实用性。
  • 08.28 00:02:23
    发表了文章 2025-08-28 00:02:23

    基于YOLOv8的无人机交通监控-十类城市交通场景目标精准识别【含完整训练源码+部署教程】

    我们不仅提供了完整的训练代码和推理脚本,还设计了图形化操作界面,极大降低了使用门槛,使得从模型训练到实际部署真正实现“零代码可视化操作”。此外,附带的数据集、训练权重及部署教程可帮助用户快速上手并完成自定义优化。
  • 08.27 23:55:21
    发表了文章 2025-08-27 23:55:21

    交通标识与信号灯数据集(1000张图片已划分、已标注)| AI训练适用于目标检测任务

    在智能驾驶与智慧交通的研究中,交通标识与信号灯识别 是最基础且最关键的任务之一。为了方便研究人员和开发者快速上手目标检测模型训练,本数据集提供了 1000张交通场景图片,并且已经按照目标检测任务的需求完成了 数据标注与划分。该数据集可直接应用于 YOLO、Faster R-CNN、SSD 等深度学习模型的训练与测试。
  • 08.27 01:46:27
    发表了文章 2025-08-27 01:46:27

    基于STM32的智能送餐柜项目实战教程【开源免费】

    随着智能餐饮和自动化服务的发展,智能送餐柜成为餐饮、企事业单位、校园食堂等场景的理想解决方案。本文将以STM32单片机为核心控制器,介绍一个完整的智能送餐柜设计方案,包括硬件架构、软件实现、功能设计以及优化思路,帮助开发者快速理解并实现类似项目。
  • 08.27 01:03:45
    发表了文章 2025-08-27 01:03:45

    基于 STM32 的睡眠质量检测仪设计与实现【开源免费】

    在当今快节奏的生活方式下,越来越多的人面临 失眠、睡眠不足、深度睡眠时间偏短 等健康问题。良好的睡眠不仅是缓解疲劳的关键,更是维持身体免疫力和心理健康的重要保障。传统的睡眠质量检测往往依赖昂贵的医疗设备或专业睡眠实验室,而这些方式成本高、使用不便,不适合日常监测。
  • 08.26 23:48:26
    发表了文章 2025-08-26 23:48:26

    基于STM32的垃圾分类项目设计与实现【开源免费】

    基于 STM32 的垃圾分类项目展示了如何使用微控制器、传感器和机械控制单元来实现自动化的垃圾分类。通过合理的硬件选型和模块化的软件设计,系统能够高效地完成垃圾的分类和投放任务。随着技术的发展,这样的智能垃圾分类系统将有助于提高垃圾分类的效率,为环境保护贡献力量。
  • 08.26 23:27:59
    发表了文章 2025-08-26 23:27:59

    PCB电路板缺陷检测数据集(近千张图片已划分、已标注)| 适用于YOLO系列深度学习检测任务【数据集分享】

    在现代电子制造中,印刷电路板(PCB)是几乎所有电子设备的核心组成部分。随着PCB设计复杂度不断增加,人工检测PCB缺陷不仅效率低,而且容易漏检或误判。因此,利用计算机视觉和深度学习技术对PCB缺陷进行自动检测成为行业发展的必然趋势。
  • 08.25 00:18:03
    发表了文章 2025-08-25 00:18:03

    河道塑料瓶识别标准数据集 | 科研与项目必备(图片已划分、已标注)| 适用于YOLO系列深度学习分类检测任务【数据集分享】

    随着城市化进程加快和塑料制品使用量增加,河道中的塑料垃圾问题日益严重。塑料瓶作为河道漂浮垃圾的主要类型,不仅破坏水体景观,还威胁水生生态系统的健康。传统的人工巡查方式效率低、成本高,难以满足实时监控与治理的需求。
  • 08.24 23:55:40
    发表了文章 2025-08-24 23:55:40

    7种交通场景数据集(千张图片已划分、已标注)|适用于YOLO系列深度学习分类检测任务【数据集分享】

    在智能交通与自动驾驶技术快速发展的今天,如何高效、准确地感知道路环境已经成为研究与应用的核心问题。车辆、行人和交通信号灯作为城市交通系统的关键元素,对道路安全与交通效率具有直接影响。然而,真实道路场景往往伴随 复杂光照、遮挡、多目标混杂以及交通信号状态多样化 等挑战,使得视觉识别与检测任务难度显著增加。
  • 08.23 02:29:25
    发表了文章 2025-08-23 02:29:25

    坐姿标准好坏姿态数据集(图片已划分、已标注)|适用于YOLO系列深度学习分类检测任务【数据集分享】

    坐姿标准好坏姿态数据集的发布,填补了计算机视觉领域在“细分健康行为识别”上的空白。它不仅具有研究价值,更在实际应用层面具备广阔前景。从青少年的健康教育,到办公室的智能提醒,再到驾驶员的安全监控和康复训练,本数据集都能发挥巨大的作用。
  • 08.23 02:12:47
    发表了文章 2025-08-23 02:12:47

    单车、共享单车已标注数据集(图片已划分、已标注)|适用于深度学习检测任务【数据集分享】

    数据是人工智能的“燃料”。一个高质量、标注精准的单车与共享单车数据集,不仅能够推动学术研究的进步,还能为智慧交通、智慧城市的建设提供有力支撑。 在计算机视觉领域,研究者们常常会遇到“数据鸿沟”问题:公开数据集与真实业务需求之间存在不匹配。本次分享的数据集正是为了弥补这一不足,使得研究人员与工程师能够快速切入单车检测领域,加速模型从实验室走向真实应用场景。
  • 08.22 01:23:46
    发表了文章 2025-08-22 01:23:46

    火灾火焰识别数据集(2200张图片已划分、已标注)|适用于YOLO系列深度学习分类检测任务【数据集分享】

    在人工智能和计算机视觉的快速发展中,火灾检测与火焰识别逐渐成为智慧城市、公共安全和智能监控的重要研究方向。一个高质量的数据集往往是推动相关研究的核心基础。本文将详细介绍一个火灾火焰识别数据集,该数据集共包含 2200 张图片,并已按照 训练集(train)、验证集(val)、测试集(test) 划分,同时配有对应的标注文件,方便研究者快速上手模型训练与评估。
  • 08.21 23:42:03
    发表了文章 2025-08-21 23:42:03

    基于STM32单片机的智能晾衣架设计与实现【开源免费】

    随着智能家居的发展,传统晾衣架已经难以满足现代家庭对便捷、智能化的需求。基于STM32单片机的智能晾衣架能够实现自动升降、光照检测、风干控制、远程控制等功能,为家庭用户提供更智能、更舒适的晾晒体验。本项目以STM32F103C8T6为核心控制器,通过电机驱动模块、光照传感器、温湿度传感器、蓝牙/Wi-Fi通信模块,实现晾衣架的自动化与远程控制。
  • 08.21 23:26:43
    发表了文章 2025-08-21 23:26:43

    基于STM32和OLED的小恐龙游戏项目设计与实现【免费开源】

    小恐龙游戏最初是作为浏览器离线小游戏而广为人知,其简单的操作与生动的画面使其深受用户喜爱。本项目将经典的小恐龙跳跃游戏移植到嵌入式平台上,使用STM32微控制器作为核心控制器,OLED屏幕进行显示,搭配按键或触摸实现用户交互。通过本项目,既可以体验游戏开发在嵌入式系统上的实现方式,又能掌握STM32 GPIO、定时器、OLED驱动、按键扫描及简单动画实现技术。
  • 08.21 22:42:32
    发表了文章 2025-08-21 22:42:32

    基于STM32和FreeRTOS的实时天气系统设计与实现【免费开源】

    随着物联网(IoT)技术的发展,实时数据监测系统逐渐成为日常生活和工业环境中不可或缺的组成部分。其中,气象监测系统不仅可以提供温度、湿度、天气状况等信息,还可以通过数据分析为农业、城市管理和个人生活提供智能化建议。本项目以STM32F407为核心控制器,结合FreeRTOS实时操作系统和ESP8266 Wi-Fi模块,实现一套高可靠、实时更新的智能气象监测系统。同时,系统集成了计时功能,通过串口屏将实时数据可视化展示,为用户提供直观的操作体验。
  • 08.21 22:22:32
    发表了文章 2025-08-21 22:22:32

    基于STM32和FreeRTOS的智能手环项目设计与实现【免费开源】

    随着可穿戴设备的普及,智能手环逐渐成为健康管理、运动监测和生活便捷的重要工具。本项目旨在设计一款基于STM32微控制器和FreeRTOS实时操作系统的智能手环,具备心率监测、运动计步、睡眠分析以及蓝牙通信功能。通过FreeRTOS实现多任务调度,提高系统响应效率和资源利用率,同时保证低功耗设计,延长手环续航。
  • 08.21 22:10:00
    发表了文章 2025-08-21 22:10:00

    基于STM32和ESP8266的智慧考勤系统设计与实现【免费开源】

    本文介绍了一个基于 STM32F103ZET6 + ESP8266 Mesh 的智慧考勤系统,涵盖了硬件架构、软件设计、网络组网、服务器端实现与数据导出。该系统不仅实现了考勤自动化,还支持多点分布式部署,具有良好的扩展性与应用价值。
  • 08.21 18:47:57
    发表了文章 2025-08-21 18:47:57

    基于YOLOv8的铁路工人安全作业检测系统|精准识别反光背心与安全帽

    本项目集成了 YOLOv8 工业目标检测模型 与 PyQt5 图形界面工具,实现了对铁路工人穿戴安全装备(如反光背心与安全帽)的自动检测与预警。
  • 08.21 01:08:20
    发表了文章 2025-08-21 01:08:20

    基于YOLOv8的无人机航拍树木目标检测系统|精准识别【含完整训练源码+部署教程】

    本项目基于YOLOv8构建了一个支持无人机航拍图像的棕榈树目标检测系统,兼具高精度识别能力与友好的图形化交互界面。通过结合PyQt5,实现了图片、视频、摄像头等多种输入方式的检测体验,极大提升了项目的实用性与可扩展性。
  • 08.19 18:36:09
    发表了文章 2025-08-19 18:36:09

    102类农业害虫数据集(20000张图片已划分、已标注)|适用于YOLO系列深度学习分类检测任务【数据集分享】

    在现代农业发展中,病虫害监测与防治 始终是保障粮食安全和提高农作物产量的关键环节。传统的害虫识别主要依赖人工观察与统计,不仅效率低下,而且容易受到主观经验、环境条件等因素的影响,导致识别准确率不足。
  • 08.19 15:18:56
    发表了文章 2025-08-19 15:18:56

    道路表面缺陷数据集(裂缝/井盖/坑洼)(6000张图片已划分、已标注)|适用于YOLO系列深度学习分类检测任务【数据集分享】

    随着城市化与交通运输业的快速发展,道路基础设施的健康状况直接关系到出行安全与城市运行效率。长期高强度的使用、气候变化以及施工质量差异,都会导致道路表面出现裂缝、坑洼、井盖下沉及修补不良等缺陷。这些问题不仅影响驾驶舒适度,还可能引发交通事故,增加道路养护成本。
  • 08.19 11:44:36
    发表了文章 2025-08-19 11:44:36

    恶疟原虫目标检测数据集(2700张图片已划分、已标注)【数据集分享】

    本数据集为 恶性疟原虫目标检测 提供了一个完整且高质量的基础,涵盖了显微镜下典型的细胞图像,并配备了标准化的 YOLO 格式标注,便于快速上手深度学习模型训练。研究人员和开发者无需从零开始标注和清洗数据,即可直接将其应用于 YOLOv5、YOLOv8、11、Faster R-CNN、Detectron2 等主流目标检测框架,极大缩短了实验周期。
  • 08.19 10:42:17
    发表了文章 2025-08-19 10:42:17

    面向海洋保护的YOLOv8水下垃圾分类检测系统|含训练与部署代码

    本项目围绕海洋环境保护问题,构建了一个基于 YOLOv8 的水下垃圾目标检测系统,具备良好的实用性与可扩展性。系统集成了自定义数据训练、图形界面封装、实时检测展示等多个关键模块,能够有效识别和分类 12 类典型水下垃圾。
  • 08.18 21:29:49
    发表了文章 2025-08-18 21:29:49

    基于YOLOv8的智能鼠类目标检测系统 | 室内外老鼠自动识别与追踪【含完整训练源码+部署教程】

    在城市环境、食品工厂、仓储物流以及实验室等场景中,老鼠(鼠类)检测需求逐渐增加。传统的红外检测或人工排查手段存在成本高、误报多、实时性差的问题。本项目结合深度学习中的YOLOv8目标检测算法,训练了专门用于识别“老鼠”目标的模型,可快速部署至视频监控系统、摄像头终端、图像分析平台等环境中,真正实现实时、高效、准确的鼠类识别,为智能化鼠害防控系统提供核心技术支撑。
  • 08.18 21:23:52
    发表了文章 2025-08-18 21:23:52

    基于YOLO的中医舌苔自动识别系统 | 五类舌象精准检测【含完整数据+训练源码】

    本项目以 YOLOv8 为核心检测引擎,实现了对中医舌象中五类舌苔特征的高效识别,构建了一个具有实用价值的中医智能辅助诊断系统原型。项目涵盖从数据准备、模型训练到推理部署的全流程,配套图形界面(可选),实现了开箱即用、模块清晰、易于复现的目标。
  • 08.18 21:17:26
    发表了文章 2025-08-18 21:17:26

    摊位货摊自动识别与监控系统识别系统开箱即用教程 (YOLOv8)| 完整源码与部署教程

    本项目展示了如何通过 YOLOv8 深度学习模型与 PyQt5 图形界面结合,开发一个 摊位货摊自动识别与监控系统。该系统能够高效地检测摊位上的商品,并对周围的行为进行实时监控,为摊位管理带来极大的便利。系统支持多种输入方式,如图像、视频和摄像头,并具备异常行为检测和报警功能。
  • 08.18 16:05:47
    发表了文章 2025-08-18 16:05:47

    多类别的家庭厨房食物、物品识别系统开箱即用教程 (YOLOv8)| 完整源码与部署教程

    本项目以 YOLOv8 为核心,构建了一个功能完整、部署简便的多类别家庭厨房食物与物品识别系统,支持 30 类日常厨房物品的精准识别。无论是图像、视频还是实时摄像头输入,都能实现高效检测与可视化展示。
  • 08.17 23:34:47
    发表了文章 2025-08-17 23:34:47

    基于YOLOv8的文档图像表格检测与识别系统设计与实现(源码打包)

    相比传统图像处理方法,YOLOv8 在表格检测任务中展现出更强的鲁棒性与泛化能力,尤其在复杂背景、扫描文档、低分辨率场景下依然保持高精度表现。同时,项目提供完整的训练流程与标注数据集,便于用户根据具体业务场景进行迁移学习与模型微调。
  • 08.17 13:33:46
    发表了文章 2025-08-17 13:33:46

    基于STM32与ESP8266的智能家居控制系统【免费开源】

    通过本项目的开发,不仅加深了对 STM32 外设编程的理解,还掌握了物联网系统的整体设计思路。从传感器数据采集,到通信协议实现,再到云端与APP交互,完整地体验了智能家居系统的开发流程。这为后续更复杂的 IoT 项目打下了坚实基础。
  • 08.17 07:32:38
    发表了文章 2025-08-17 07:32:38

    开箱即用|基于YOLOv8的农作视觉AI——农民与农用车检测系统实战

    本项目以YOLOv8为核心,结合PyQt5可视化界面,完整实现了“劳动人民”与“农用汽车”在农作场景中的智能识别功能。无论是图片、视频还是实时摄像头输入,系统都能实现高效、稳定的识别与展示,具备良好的实用性与拓展性。
  • 08.16 23:30:20
    发表了文章 2025-08-16 23:30:20

    STM32与传感器技术结合打造智能行李箱 | 自动跟随与报警系统【免费开源】

    本项目成功实现了基于STM32的智慧行李箱设计,采用了超声波测距、重力传感器和报警系统等技术,打造了一款智能且安全的行李箱。通过超声波测距模块,行李箱能够实时跟随主人并根据距离变化调整电机的速度与方向,确保小车始终保持与主人的相对位置。此外,重力测量模块能够检测行李箱内物品的重量,若超重则及时通过LED和蜂鸣器提醒主人,避免物品过重对行李箱造成损害或不便。
  • 08.16 17:53:55
    发表了文章 2025-08-16 17:53:55

    基于YOLOv8的藻类细胞实时检测识别项目|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!

    本项目以 YOLOv8 为核心检测框架,结合 PyQt5 实现了一个集成化、模块化、可交互的藻类细胞实时识别系统,覆盖了从数据标注、模型训练到图形界面部署的完整流程。
  • 08.16 00:20:15
    发表了文章 2025-08-16 00:20:15

    【免费开源】基于STM32的智慧门禁系统设计与实现(附源码)

    基于STM32的智慧门禁系统,整合了RFID、密码、指纹等多种身份验证方式,实现门锁的智能化控制。通过模块化设计,系统易扩展,可接入更多智能设备,如远程监控、访客记录上传云端等。该项目不仅适用于小型办公场所、社区门禁,也可作为智能家居控制系统的一部分,具有良好的推广价值和实用性。
  • 08.16 00:01:21
    发表了文章 2025-08-16 00:01:21

    【免费开源】基于STM32的蓝牙小车/智能小车项目详解(附源码)

    通过本项目,你可以系统掌握STM32外设控制、蓝牙通信、电机驱动和传感器数据处理技术,实现一辆可远程控制并具备避障功能的智能小车。该项目具有高度可扩展性,后续可增加循迹、自动寻路、摄像头等高级功能。
  • 08.15 23:39:51
    发表了文章 2025-08-15 23:39:51

    【免费开源】基于STM32的智能宠物喂食系统设计与实现(全流程技术详解)附源码

    本项目基于STM32F103C8T6设计实现智能宠物喂食系统,支持定时喂食、远程控制、余粮检测、语音提示等功能,结合传感器与物联网技术,提升宠物喂养智能化水平,适用于家庭及嵌入式课程实践。源码开源,具备良好扩展性。
  • 08.15 20:59:48
    发表了文章 2025-08-15 20:59:48

    【免费开源】STM32+ESP8266 打造低成本智能家居物联网系统(附源码与硬件设计)

    本项目基于STM32与ESP8266打造低成本智能家居系统,支持温度监测、远程控制与数据上传,附完整源码与硬件设计,适合物联网初学者与电子爱好者学习与扩展。
  • 08.14 02:10:47
    发表了文章 2025-08-14 02:10:47

    【免费开源】基于 STM32F4 的四轴飞行器设计与实现——从零开始到成功起飞(项目源码打包分享)

    四轴飞行器作为一种低空、低成本的遥感平台,已经在多个领域展现出广泛的应用潜力。相比其他类型的飞行器,它在硬件上结构紧凑、安装方便,但在软件层面却充满挑战——从传感器数据融合到姿态解算,再到快速且稳定的控制算法,每一环节都需要精心设计,也正因此让四轴飞行器更具技术魅力。
  • 08.09 23:18:26
    发表了文章 2025-08-09 23:18:26

    基于YOLOv8的矿井内煤炭图像智能识别|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!

    本项目基于最新 YOLOv8 检测框架,构建了面向矿井场景的煤炭图像检测系统,支持端到端的模型训练、推理与图形界面部署。项目在实际运行中可识别煤块、杂质等不同种类目标,适合应用于煤炭分拣、矿区自动巡检等任务。
  • 发表了文章 2025-09-07

    人体跌倒识别检测项目|全流程源码+数据集+可视化界面+一键训练部署

  • 发表了文章 2025-09-07

    最全DIY嵌入式智能手表 | STM32可编程多功能手表 [开源分享]

  • 发表了文章 2025-09-04

    目标检测数据集 — 田间杂草检测数据集(4000张图片已划分、已标注)

  • 发表了文章 2025-08-28

    基于STM32的人体健康监测系统设计与实现(温度、心率、老人摔倒检测)【开源免费】

  • 发表了文章 2025-08-28

    交通标识与信号灯数据集(1000张图片已划分、已标注)| AI训练适用于目标检测任务

  • 发表了文章 2025-08-27

    基于STM32的智能送餐柜项目实战教程【开源免费】

  • 发表了文章 2025-08-27

    基于 STM32 的睡眠质量检测仪设计与实现【开源免费】

  • 发表了文章 2025-08-26

    基于STM32的垃圾分类项目设计与实现【开源免费】

  • 发表了文章 2025-08-26

    PCB电路板缺陷检测数据集(近千张图片已划分、已标注)| 适用于YOLO系列深度学习检测任务【数据集分享】

  • 发表了文章 2025-08-25

    河道塑料瓶识别标准数据集 | 科研与项目必备(图片已划分、已标注)| 适用于YOLO系列深度学习分类检测任务【数据集分享】

  • 发表了文章 2025-08-25

    7种交通场景数据集(千张图片已划分、已标注)|适用于YOLO系列深度学习分类检测任务【数据集分享】

  • 发表了文章 2025-08-23

    坐姿标准好坏姿态数据集(图片已划分、已标注)|适用于YOLO系列深度学习分类检测任务【数据集分享】

  • 发表了文章 2025-08-22

    火灾火焰识别数据集(2200张图片已划分、已标注)|适用于YOLO系列深度学习分类检测任务【数据集分享】

  • 发表了文章 2025-08-21

    基于STM32单片机的智能晾衣架设计与实现【开源免费】

  • 发表了文章 2025-08-21

    基于STM32和OLED的小恐龙游戏项目设计与实现【免费开源】

  • 发表了文章 2025-08-21

    基于STM32和FreeRTOS的实时天气系统设计与实现【免费开源】

  • 发表了文章 2025-08-21

    基于STM32和FreeRTOS的智能手环项目设计与实现【免费开源】

  • 发表了文章 2025-08-21

    基于STM32和ESP8266的智慧考勤系统设计与实现【免费开源】

  • 发表了文章 2025-08-21

    基于YOLOv8的铁路工人安全作业检测系统|精准识别反光背心与安全帽

  • 发表了文章 2025-08-21

    基于YOLOv8的无人机航拍树木目标检测系统|精准识别【含完整训练源码+部署教程】

正在加载, 请稍后...
滑动查看更多
  • 回答了问题 2025-06-14

    一步搞定创意建站,Bolt.diy提供了哪些优势?

    【一句话建站真的可行吗?我用 Bolt.diy 试了一下,结果惊喜!】 作为一个习惯用 VS Code+Node.js 敲代码的开发者,我起初对“一句话建站”是抱着怀疑态度去体验 Bolt.diy 的,结果……它真的做到了! 🔧 我的体验过程: ✅ 第一步:打开 Bolt.diy 页面根据官方提供的入口,我进入了 Bolt.diy 在线界面,一眼就被“用自然语言构建网站”的提示吸引,试着输入: 「我想要一个展示我摄影作品的极简风格网站,首页包含横幅、作品画廊和联系方式。」 ✅ 第二步:等待生成不到 30 秒,系统就返回了一个完整的网站模板:极简风格 + 响应式布局,甚至图片展廊区域都自动填充了 placeholder,我可以直接上传照片替换,非常贴心。 ✅ 第三步:自定义 + 部署Bolt.diy 提供了代码编辑入口,我打开它后发现整个项目结构是可读性非常高的全栈工程,可以在前端(React)与后端(基于函数计算)之间灵活调整。我稍作修改后,一键部署上线! 🚀 使用感受: 自然语言理解很强:我的描述并不专业,它仍准确识别了「极简风格 + 画廊 + 联系方式」三大核心要素; 部署成本极低:使用阿里云函数计算(FC)部署,不用管服务器,真的做到了「写完即上线」; 支持二次开发:我作为开发者,还能进后台继续改代码,非常适合有定制需求的用户; 全栈工程预设完整:包括路由、API 接口、组件样式等,让我节省了 80% 的开发时间。 🧠 改进建议: 希望支持保存多个网站草稿,便于做 A/B 测试; 建议未来集成数据库建模支持,比如一句话生成「带表单提交 + 数据入库」的功能; 能否在生成后添加 GPT 助手对代码做解释,方便新人理解结构逻辑。 🗣️ 一句话建站示例: 「我想搭建一个介绍我AI项目的单页网站,风格科技感,包含项目展示、团队介绍和联系方式。」→ Bolt.diy 自动生成了一个炫酷背景 + 滑动式内容切换的单页项目站点! 🎁 总结: 从开发角度来说,Bolt.diy 是一次“降本增效”的真正实践。它不只是“低代码”,而是在理解用户需求的同时提供可扩展的全栈解决方案,这点非常打动我。如果你也在为如何快速建站发愁,真心建议试试看——只需一句话,创意就能变成现实。
    踩0 评论0
  • 回答了问题 2025-06-14

    如何可以让 Kubernetes 运维提效90% ?

    【我的ACK Auto Mode动手体验分享|运维效率真的提升了90%】 作为一名一线运维工程师,我对 Kubernetes 的“复杂性”深有体会:从集群网络、资源调度,到基础组件的部署与维护,每一步都需小心翼翼。而这次体验阿里云 ACK Pro 智能托管模式(Auto Mode) 后,我的第一反应就是两个字:“省心”! ✅ 动手实践过程简述: 开通 Auto Mode 集群在控制台点击「创建集群」,选择托管集群(Pro),勾选“智能托管模式”。整个流程无需复杂配置,仅做了基础网络和节点池的设定,几分钟集群就初始化完成。 快速部署 Nginx 工作负载控制台中通过工作负载向导部署 Nginx Deployment,系统自动配置了 Service、Pod 策略、甚至基础的监控告警。最惊艳的是:Ingress 配置居然也自动带好了证书支持和路径规则! 运维感受对比:传统 vs Auto Mode 传统方式部署至少需要手动配置 10+ 个 YAML 文件 ACK Auto Mode 下,我几乎没有写一行 YAML,基础组件(如 CoreDNS、Metrics Server、Ingress Controller)均已托管部署 节点池支持自动伸缩,资源供给智能化,免去了很多“盯节点”的烦恼 🧠 体验感想: 托管能力非常强ACK Auto Mode 托管了大量日常要手动维护的内容:基础组件安装、容器运行时升级、节点自动修复等,让运维人员更关注业务本身而非底层维护。 智能调度 & 弹性供给令人惊艳ACK Pro 支持弹性节点池 + GPU调度 + 预留资源控制,结合 Auto Mode 后,在资源利用率、成本控制方面也能达到最佳实践。 仪表盘视图清晰,告警及时控制台告警 + 资源视图很完整,能快速定位异常 pod/节点,还可以直接一键重建,非常适合 DevOps 场景下快速响应。 🛠️ 建议与想法:希望后续可以在工作负载部署中,增加 Helm Chart 的可视化部署支持,对 CI/CD 接入会更友好; 建议增加「智能推荐资源规格」功能,例如基于历史负载曲线推荐 CPU/Mem 的最佳配置; 想要一个「一键克隆集群」功能,用于多环境(如测试 / 灰度 / 生产)快速切换与恢复。 🎁 总结: 通过这次使用 ACK Auto Mode 部署 Nginx 的体验,我切实感受到智能托管模式极大地简化了 K8s 运维的复杂度,真正做到了“即开即用”、“智能托管”。对于像我这样既希望稳定又希望高效的用户来说,它是目前体验过的最省心的 K8s 运维方案之一。 强烈推荐给还在手动维护 K8s 的同行们,ACK Auto Mode 值得试一试!
    踩0 评论0
  • 回答了问题 2025-02-23

    如何看待「学习 AI 是个伪命题,AI 的存在就是让人不学习」的观点?

    AI 是工具,它的作用是让人类的工作更加高效、智能,而不是完全取代人类的学习和思考。正如我们以前使用计算器或者自动化软件提高工作效率一样,AI 并不是让人不再学习,而是让我们可以用不同的方式去学习和成长。AI 通过处理复杂任务和庞大的数据,帮助我们解放了部分认知负担,让我们有更多的时间去思考、创新和探索其他领域。因此,AI 是工具,它并不剥夺人类学习的权利和需求,反而可能激发新的学习需求,比如如何使用 AI、如何与 AI 协作等。 学习 AI 技术本身也成为一种技能。现代社会,尤其是技术领域,对 AI 技术的掌握变得越来越重要。从数据分析到机器学习,再到深度学习和神经网络,AI 技术的普及和应用已经改变了许多行业。学习 AI 不仅仅是为了理解它如何工作,还可以帮助我们更好地理解其他领域,比如如何设计更有效的工作流程,如何在复杂问题中做出优化决策等。
    踩0 评论0
  • 回答了问题 2025-02-11

    什么样的代码让人一眼就能看出是AI写的?

    AI生成的代码往往具有高度的标准化和一致性。例如,变量命名、缩进风格、注释格式等都可能过于统一,缺乏人类程序员在编码过程中可能展现的个性和灵活性。这种高度的一致性可能让人感觉到代码是机械生成的。AI在处理代码生成时,可能无法完全理解代码的上下文和意图。这可能导致生成的代码在逻辑上虽然正确,但在实际业务场景中却显得不够贴合或冗余。例如,AI可能会生成一些不必要的函数或变量,或者在某些情况下过于复杂化代码。AI生成的代码中的注释可能过于详细,涵盖了代码的每一行,或者完全缺乏深度,只是简单地重复了代码的功能。这与人类程序员通常会根据代码的复杂性和重要性来选择注释的详细程度有所不同。AI生成的代码往往倾向于遵循已有的模式和最佳实践,而缺乏创新性和灵活性。这可能表现为代码结构过于僵化,缺乏针对特定问题的定制化解决方案。
    踩0 评论0
  • 回答了问题 2025-02-11

    春节假期返工后,你有哪些提升职场幸福感的小技巧?

    春节返岗第一天,面对堆积如山的邮件和此起彼伏的钉钉提示音,我坐在工位上突然笑出了声——邻座同事带来的广式腊肠散发着年味,键盘缝隙里还藏着没清理的砂糖橘碎屑,这种荒诞的割裂感让我突然意识到:职场幸福感需要刻意构建。 每天提前20分钟到岗,在茶水间慢慢冲泡挂耳咖啡,看着深褐色的液体浸透滤纸,这个带有咖啡香气的缓冲带能有效隔离通勤焦虑。趁电脑开机间隙,用便签纸写下今日'必须完成/最好完成/可以摆烂'的三件事,在撕掉昨日便签的瞬间完成工作重启仪式。
    踩0 评论0
  • 回答了问题 2025-01-22

    大模型数据处理vs人工数据处理,哪个更靠谱?

    在探讨大模型处理数据与人工处理数据的可靠性时,我认为需要从多个维度进行分析,包括效率、准确性、灵活性以及成本等。 从效率的角度来看,大模型处理数据无疑具有显著优势。随着技术的不断进步,大模型能够迅速识别、解析并处理大量的多模态数据,包括文本、图像、音视频等。这种高效的数据处理能力使得企业能够在短时间内获取有价值的信息,从而做出更及时的决策。相比之下,人工处理数据则需要耗费大量的时间和精力,尤其是在处理大规模数据集时,效率往往难以保证。
    踩0 评论0
  • 回答了问题 2025-01-18

    AI年味,创意新年,你认为AI能否为春节活动增添新意呢?

    在这次 “AI 年味,创意新年” 活动中,我参与了使用函数计算 x 百炼创作新年故事剧本的项目,完成了一个名为《玉兔与祥龙的新春交接之旅》的剧本。故事讲述了玉兔在即将结束值守任务时,与祥龙相遇,祥龙对人间的春节庆典充满好奇,玉兔便带着祥龙穿梭于人间的各个春节活动场景,从热闹的舞龙舞狮到温馨的家庭团圆饭,期间发生了一系列有趣且充满温情的故事,最终祥龙满怀期待地准备迎接属于它的值守之年,传递了辞旧迎新、美好传承的寓意。
    踩0 评论0
  • 回答了问题 2025-01-18

    在海量用户中,将如何快速定位到目标人群进行个性化营销?

    首先要从各种渠道收集用户数据,包括网站浏览记录、社交媒体行为、移动应用使用情况、购买历史等。例如,对于一个电商平台,用户在网站上的搜索关键词、浏览的商品类别和时长、加入购物车但未购买的商品等数据都非常有价值。从社交媒体平台可以获取用户的点赞、评论、分享内容,这些能反映用户的兴趣爱好。线下渠道的数据也不能忽视,如实体店的购买记录、参加促销活动的签到信息等。通过整合线上线下数据,可以构建一个更全面的用户画像。
    踩0 评论0
  • 回答了问题 2025-01-18

    你认为哪些领域的知识对开发者来说特别重要?

    编程语言相关知识。编程语言是开发者与计算机沟通的桥梁,熟练掌握至少一门主流编程语言是基础。比如我从事后端开发,Python 对我来说就至关重要。它简洁的语法、丰富的库和框架,像 Flask、Django 等,极大地提高了开发效率。在学习 Python 的过程中,我深入理解了数据类型、控制结构、函数、类等基础知识,这些是编写任何复杂程序的基石。通过实际项目,我用 Python 搭建 Web 服务,处理数据,实现各种业务逻辑,深刻体会到扎实掌握编程语言对于开发工作的重要性。
    踩0 评论0
  • 回答了问题 2025-01-18

    “99套餐”ECS云端问答节!回答问题赢阿里云纪念衫、加湿器等好礼!

    7.回答如下以下是在阿里云ECS服务器上使用快照和OSS存储包进行数据备份的步骤: 一、使用快照进行备份 了解快照快照是一种数据备份方式,它可以记录某个时间点上云盘的数据状态。就像是给数据拍了一张照片,当需要恢复数据时,可以根据这个快照来还原。快照适用于对整块云盘的数据进行备份,例如系统盘或者数据盘的备份。 创建快照的步骤登录阿里云控制台:在浏览器中访问阿里云官网,使用您的账号登录,然后找到“云服务器ECS”控制台。选择云盘:在ECS控制台左侧导航栏中,找到“存储与快照” - >“云盘”选项。在这里,您可以看到与您的ECS实例相关联的系统盘和数据盘。创建快照:对于要备份的云盘,点击其右侧的“创建快照”按钮。您需要填写快照名称、描述等信息。快照名称应该能够清晰地反映备份的内容和用途,例如“系统盘备份_20250118”。配置快照策略(可选):您还可以设置自动快照策略。在云盘详情页面中,找到“自动快照策略”选项,通过它可以设置定期自动创建快照的时间、保留的快照数量等参数。这对于需要定期备份数据的情况非常有用,比如每天备份一次系统盘。 使用快照恢复数据的步骤 当需要恢复数据时,在云盘列表中找到对应的云盘,点击“回滚磁盘”。选择要回滚的快照,确认操作。需要注意的是,回滚操作会覆盖当前云盘上的数据,所以在执行此操作之前,一定要确保数据已经备份或者确认可以覆盖现有数据。 快照的限制和注意事项 快照会占用一定的存储空间,阿里云会根据您使用的快照空间大小收取费用。正在创建快照的云盘,其性能可能会受到一定程度的影响,因为在创建快照过程中,系统需要读取云盘的数据。 二、使用OSS存储包进行备份 了解OSS(对象存储服务)OSS是阿里云提供的一种海量、安全、低成本、高可靠的云存储服务。它可以存储各种类型的数据,如文件、图片、视频等。使用OSS进行备份可以将ECS服务器上的数据存储到云端的对象存储中,便于长期保存和管理。 准备工作创建OSS存储空间:登录阿里云OSS控制台,点击“创建存储空间”按钮。需要设置存储空间名称、地域等参数。存储空间名称是全局唯一的,地域选择要考虑数据访问的延迟和成本等因素,例如,如果您的ECS服务器在华东1地区,那么可以选择将OSS存储空间也创建在华东1地区,以减少数据传输的延迟。获取访问密钥(AccessKey):为了能够让ECS服务器访问OSS存储空间,您需要获取访问密钥。在阿里云控制台中,找到“AccessKey管理”,创建或获取已有的AccessKey。这个密钥包括AccessKey ID和AccessKey Secret,需要妥善保管,不能泄露。 在ECS服务器上备份数据到OSS的步骤安装OSS工具:在ECS服务器上,根据服务器的操作系统类型,安装相应的OSS命令行工具或者OSS SDK。例如,如果是Linux系统,可以通过命令行安装OSS - UTIL工具。配置访问权限:使用获取到的AccessKey ID和AccessKey Secret,在ECS服务器上配置OSS工具的访问权限,使得服务器能够与OSS存储空间进行通信。备份数据:使用OSS工具,通过命令行或者编程接口,将ECS服务器上的数据上传到OSS存储空间。例如,使用OSS - UTIL工具,可以通过命令“ossutil cp [本地文件路径] oss://[OSS存储空间名称]/[目标路径]”将本地文件上传到OSS。 从OSS恢复数据到ECS的步骤在ECS服务器上,使用OSS工具,通过命令“ossutil cp oss://[OSS存储空间名称]/[备份文件路径] [本地恢复路径]”将OSS存储空间中的数据下载到ECS服务器上。 OSS备份的注意事项OSS存储的数据是按照使用的存储空间和流量等进行收费的,所以在备份大量数据时,要考虑成本。确保数据在上传到OSS过程中的安全性,例如,可以使用SSL/TLS协议进行数据传输加密。同时,对于敏感数据,还可以在OSS中设置访问权限,限制只有授权的用户或应用才能访问备份数据。
    踩0 评论1
  • 回答了问题 2025-01-18

    7、如何在阿里云ECS服务器上进行数据备份?

    以下是在阿里云ECS服务器上使用快照和OSS存储包进行数据备份的步骤: 一、使用快照进行备份 了解快照快照是一种数据备份方式,它可以记录某个时间点上云盘的数据状态。就像是给数据拍了一张照片,当需要恢复数据时,可以根据这个快照来还原。快照适用于对整块云盘的数据进行备份,例如系统盘或者数据盘的备份。 创建快照的步骤登录阿里云控制台:在浏览器中访问阿里云官网,使用您的账号登录,然后找到“云服务器ECS”控制台。选择云盘:在ECS控制台左侧导航栏中,找到“存储与快照” - >“云盘”选项。在这里,您可以看到与您的ECS实例相关联的系统盘和数据盘。创建快照:对于要备份的云盘,点击其右侧的“创建快照”按钮。您需要填写快照名称、描述等信息。快照名称应该能够清晰地反映备份的内容和用途,例如“系统盘备份_20250118”。配置快照策略(可选):您还可以设置自动快照策略。在云盘详情页面中,找到“自动快照策略”选项,通过它可以设置定期自动创建快照的时间、保留的快照数量等参数。这对于需要定期备份数据的情况非常有用,比如每天备份一次系统盘。 使用快照恢复数据的步骤 当需要恢复数据时,在云盘列表中找到对应的云盘,点击“回滚磁盘”。选择要回滚的快照,确认操作。需要注意的是,回滚操作会覆盖当前云盘上的数据,所以在执行此操作之前,一定要确保数据已经备份或者确认可以覆盖现有数据。 快照的限制和注意事项 快照会占用一定的存储空间,阿里云会根据您使用的快照空间大小收取费用。正在创建快照的云盘,其性能可能会受到一定程度的影响,因为在创建快照过程中,系统需要读取云盘的数据。 二、使用OSS存储包进行备份 了解OSS(对象存储服务)OSS是阿里云提供的一种海量、安全、低成本、高可靠的云存储服务。它可以存储各种类型的数据,如文件、图片、视频等。使用OSS进行备份可以将ECS服务器上的数据存储到云端的对象存储中,便于长期保存和管理。 准备工作创建OSS存储空间:登录阿里云OSS控制台,点击“创建存储空间”按钮。需要设置存储空间名称、地域等参数。存储空间名称是全局唯一的,地域选择要考虑数据访问的延迟和成本等因素,例如,如果您的ECS服务器在华东1地区,那么可以选择将OSS存储空间也创建在华东1地区,以减少数据传输的延迟。获取访问密钥(AccessKey):为了能够让ECS服务器访问OSS存储空间,您需要获取访问密钥。在阿里云控制台中,找到“AccessKey管理”,创建或获取已有的AccessKey。这个密钥包括AccessKey ID和AccessKey Secret,需要妥善保管,不能泄露。 在ECS服务器上备份数据到OSS的步骤安装OSS工具:在ECS服务器上,根据服务器的操作系统类型,安装相应的OSS命令行工具或者OSS SDK。例如,如果是Linux系统,可以通过命令行安装OSS - UTIL工具。配置访问权限:使用获取到的AccessKey ID和AccessKey Secret,在ECS服务器上配置OSS工具的访问权限,使得服务器能够与OSS存储空间进行通信。备份数据:使用OSS工具,通过命令行或者编程接口,将ECS服务器上的数据上传到OSS存储空间。例如,使用OSS - UTIL工具,可以通过命令“ossutil cp [本地文件路径] oss://[OSS存储空间名称]/[目标路径]”将本地文件上传到OSS。 从OSS恢复数据到ECS的步骤在ECS服务器上,使用OSS工具,通过命令“ossutil cp oss://[OSS存储空间名称]/[备份文件路径] [本地恢复路径]”将OSS存储空间中的数据下载到ECS服务器上。 OSS备份的注意事项OSS存储的数据是按照使用的存储空间和流量等进行收费的,所以在备份大量数据时,要考虑成本。确保数据在上传到OSS过程中的安全性,例如,可以使用SSL/TLS协议进行数据传输加密。同时,对于敏感数据,还可以在OSS中设置访问权限,限制只有授权的用户或应用才能访问备份数据。
    踩0 评论0
  • 回答了问题 2025-01-13

    使用安全体检功能,看看你有多少未修复的安全问题?

    网络安全检测项至关重要,它如同企业的 “城墙卫士”,实时监测端口开放、网络流量异常等情况,提前预警潜在网络攻击,保障业务连续性。对于电商企业,交易高峰期若遭受网络攻击导致服务中断,损失将不可估量,所以该项检测能让企业未雨绸缪。数据安全检测同样不可或缺,尤其是涉及用户隐私信息的行业,如医疗、金融。确保数据加密存储、传输,防止数据泄露,既维护了客户信任,又规避了法律风险。而访问控制检测对企业内部管理意义重大,合理的权限分配能有效避免内部人员因权限滥用引发的数据混乱或丢失,让各岗位人员各司其职,保障数据有序流转与使用。
    踩0 评论0
  • 回答了问题 2025-01-13

    AI时代,聊聊如何从海量数据中挖掘金矿?

    在 AI 时代,阿里云为企业从海量数据中挖掘 “金矿” 提供了强大助力。在数据收集与整合环节,阿里云的多款产品发挥关键作用。阿里云物联网平台能够广泛连接各类传感器,无论是制造业中的生产设备传感器,还是农业领域的土壤湿度、气温监测传感器,都可以轻松接入,实现海量设备数据的实时汇聚,为企业拓宽数据来源的广度。同时,其数据传输服务确保数据稳定、高速地从各个采集点传输至云端存储,避免数据丢失或延迟。借助阿里云的大数据开发平台,企业能便捷地整合来自不同业务系统,如 ERP、CRM 等内部系统,以及社交媒体、行业数据供应商等外部渠道的数据,打破数据孤岛,让分散的数据汇聚成有价值的资源池。数据清洗与预处理阶段,阿里云的数据治理工具 Dataphin 大显身手。它可以自动识别数据中的重复、错误和缺失值,通过内置的智能算法,精准且高效地完成数据清洗工作。例如在处理电商订单数据时,能快速纠正价格录入错误、填补客户地址缺失信息,还能统一不同来源数据的格式,像将日期格式化为统一标准,文本数据进行规范化编码,为后续深入分析夯实基础。谈到数据存储与管理,阿里云更是优势尽显。对于结构化数据,阿里云关系型数据库 RDS 提供了稳定、高性能的存储解决方案,满足企业日常业务运营中的数据存储需求,保障数据读写的快速响应。而面对非结构化数据的爆发式增长,阿里云对象存储 OSS 以及分布式文件系统,为图片、音频、视频等数据提供海量存储空间,且具备高扩展性,随时应对企业数据规模的扩大。阿里云的数据仓库产品 AnalyticDB,结合其先进的数据建模技术,将经过清洗、转换的数据有序存储,方便企业快速查询、分析,助力决策制定;数据湖构建服务则允许企业保留原始数据的同时,按需灵活处理,挖掘隐藏价值。进入数据分析与挖掘核心阶段,阿里云的机器学习平台 PAI 涵盖丰富的算法库,从传统的数据挖掘算法,如精准分类客户群体的决策树算法、挖掘产品关联关系的 Apriori 算法,到前沿的深度学习模型,一应俱全。企业无需自行搭建复杂的算法研发环境,只需通过简单的配置,就能运用这些强大工具,探索数据间的奥秘。例如,利用 PAI 构建的客户流失预测模型,提前洞察客户行为趋势,精准制定挽留策略。并且,阿里云 Quick BI 智能商业分析产品,将分析结果以精美、直观的可视化图表呈现,无论是高层管理者查看业务全景,还是一线业务人员聚焦具体业务细节,都能一眼洞悉数据背后的关键信息,让数据洞察切实转化为商业决策,驱动企业在 AI 时代的浪潮中破浪前行,真正从海量数据里挖掘出熠熠生辉的 “金矿”。
    踩0 评论0
  • 回答了问题 2025-01-08

    与 AI “对话”,多模态音视频交互能给生活提供多大便利?

    通过自然流畅的对话,人们无需手动操作手机或其他设备,只需简单地说出指令,如 “查询明天的天气”“帮我设定下午三点的会议提醒” 等,AI 就能立即响应并完成任务,大大节省了时间和精力,使生活节奏更加紧凑高效可以直接通过语音和视频与家中的智能设备进行互动,如 “打开客厅的灯”“把空调调到 26 度”“查看厨房的监控画面” 等,实现对智能家居设备的无缝连接和统一控制,无需再逐个打开应用程序或寻找遥控器,使家居生活更加智能化和舒适
    踩0 评论0
  • 回答了问题 2025-01-08

    AI造势,学习机爆火,距离“AI家教”还有多远?

    智能学习机目前虽然可以提供个性化学习计划,但它们的知识体系大多是基于预设的课程和教材。而真正的 “AI 家教” 需要对知识有更深入、更广泛的理解。例如,在数学教学中,学习机可能只是按照既定的公式讲解和练习,而 “AI 家教” 应该能够理解数学知识在不同学科领域(如物理、工程等)的交叉应用,并且根据学生的兴趣和未来的发展方向,灵活地调整教学内容。以一个对建筑设计感兴趣的学生为例,“AI 家教” 可以将几何知识与建筑结构的力学原理相结合,为学生提供更具实用性和启发性的知识讲解,而这对于目前的学习机来说是比较困难的。
    踩0 评论0
  • 回答了问题 2025-01-04

    2024年接近尾声,你对即将到来的2025年有什么样的期待或愿望?

    2024 年因为工作忙碌,没有足够的时间去锻炼身体。在 2025 年,希望自己能养成规律的健身习惯,比如每周至少去三次健身房,或者进行三次户外跑步。通过锻炼来增强体质,减少生病的频率,让自己有更充沛的精力去享受生活和应对工作。同时,也希望在饮食方面更加注重营养均衡。减少吃外卖的次数,多自己下厨准备健康的饭菜,多摄入蔬菜水果等富含维生素和膳食纤维的食物,告别一些不健康的饮食习惯,比如熬夜吃零食等。希望在 2025 年能够在工作上取得一些显著的成果。在项目管理方面,能够顺利地带领团队完成几个重要的项目,确保项目按时交付,并且在质量上达到甚至超过预期标准。通过这些工作成果来证明自己的能力,为自己的职业发展打下更坚实的基础。
    踩0 评论0
  • 回答了问题 2025-01-04

    当面对多种不同格式的文档时,如何让AI系统更好地处理复杂文档?

    在工作中,我曾经使用百炼搭建 RAG 来处理大量的项目文档。之前,从不同格式的文档中查找特定信息是一件非常耗时的事情。例如,在一个包含多个 Word、Excel 和 PDF 文档的项目资料包中,查找某个技术指标的数据。使用 RAG 后,通过其智能检索功能,能够快速定位到相关文档和文档中的具体位置,大大节省了时间。对于一些复杂的文档内容,RAG 表现出了较高的准确性。比如在处理一些包含大量专业术语的技术报告时,它能够准确地理解和提取关键信息。在一次产品研发过程中,需要从一系列旧的研发文档(包括 PDF 格式的实验报告和 Excel 格式的数据分析表)中获取某一关键参数的历史数据,RAG 系统准确地从这些格式各异的文档中提取出了我们需要的数据,避免了人工查找可能出现的遗漏和错误。搭建 RAG 的过程虽然有一定的技术门槛,但百炼平台提供了相对友好的操作界面和详细的指导文档,降低了学习成本。不过,对于没有技术背景的用户来说,可能还是需要一些时间来熟悉整个搭建流程。
    踩0 评论0
  • 回答了问题 2025-01-04

    通义APP上新【局部风格化】新功能,万物皆可毛茸茸你体验了吗?

    这张图片展示了长城的一处景象,长城上覆盖着绿色的植被,显得生机勃勃。这种风格化处理能够让熟悉的场景变得陌生而有趣,给人一种耳目一新的感觉。无论是用于个人欣赏还是社交媒体分享,都能吸引他人的目光,增加图片的吸引力和趣味性。 在对复杂场景进行风格化处理时,会存在一些细节丢失或处理不自然的情况。例如,在这张长城图片中,长城上的植被虽然看起来很有创意,但可能在细节上与真实的植被有一定的差异,影响整体的真实感。
    踩0 评论0
  • 回答了问题 2025-01-04

    一个专属的智能 AI 总结助手,能在多大程度上提升工作效率?

    在日常工作中,经常需要处理各种冗长的项目文档、行业报告等资料。比如我之前负责一个大型项目的市场调研工作,收集回来的资料光是文字内容就有几十页,要人工从中梳理出关键信息,得花费大量的时间和精力,而且还容易遗漏重点。但如果有智能 AI 总结助手,它能迅速抓取诸如市场规模数据、竞争对手的核心优势、目标客户群体的关键特征等重要内容,将原本可能需要几个小时的提炼工作缩短到几分钟,大大节省了时间成本,让我能更快地基于这些提炼好的要点去开展后续的分析和策略制定工作。不同的工作场景对总结内容的风格要求是不一样的。比如给上级汇报工作时,可能需要简洁正式且重点突出的总结;而在团队内部交流分享时,又希望总结内容更通俗易懂、生动一些。AI 总结助手可以根据个人设定的偏好,灵活调整输出的风格和详略程度,满足多样化的需求。像我给领导汇报项目进度时,就让助手生成逻辑严谨、语言简洁的项目总结;在和团队成员沟通项目情况时,则让它输出更通俗易懂、带有一些案例说明的内容,这样在不同的沟通情境下都能达到很好的信息传递效果,提升了整体的沟通和协作效率。
    踩0 评论0
  • 回答了问题 2025-01-04

    AI视频技术的发展是否会影响原创内容的价值?

    AI 视频技术的便捷性会导致视频内容数量呈爆炸式增长。例如,在广告营销领域,以往制作一个精美的产品宣传视频可能需要专业团队花费数天甚至数周时间,包括策划、拍摄、剪辑等复杂的流程。而现在,借助 AI 视频技术,一些小型企业或个人可以在短时间内生成大量类似的宣传视频。这使得原创内容创作者面临着更加激烈的竞争环境,他们的作品很容易被淹没在海量的 AI 生成视频中。由于 AI 是基于已有的数据和模式来生成视频,这可能会导致大量相似的视频内容出现。比如在旅游视频领域,AI 可能根据热门的旅游景点、拍摄手法和音乐风格,生成大量千篇一律的旅游推荐视频。这种同质化现象会让观众产生审美疲劳,从而降低对原创内容的辨识度和关注度。
    踩0 评论0
正在加载, 请稍后...
滑动查看更多
正在加载, 请稍后...
暂无更多信息