能力说明:
了解Python语言的基本特性、编程环境的搭建、语法基础、算法基础等,了解Python的基本数据结构,对Python的网络编程与Web开发技术具备初步的知识,了解常用开发框架的基本特性,以及Python爬虫的基础知识。
暂时未有相关云产品技术能力~
记录学习历程,分享学习心得。
人脸处理是人工智能中的一个热门话题,人脸处理可以使用计算机视觉算法从人脸中自动提取大量信息。在本文中,将通过实战讲解如何使用这些库进行人脸检测,为进一步进行相关处理奠定基础。
K-Means 聚类算法的目标是将 n 个样本划分(聚类)为 K 个簇,该算法通过找到簇的中心并将输入样本分组到簇周围。在本文中,利用 K-Means 聚类进行色彩量化,以减少图像中颜色数量。
图像阈值技术是许多计算机视觉应用中的关键步骤。在本文中,我们将利用 scikit-image 实现阈值技术。
Matplotlib是Python的绘图库,可以生成所需的出版质量级别的图形,本文将详细介绍Matplotlib中的事件处理,并通过实战了解其用法。
神经风格迁移使用CNN将一幅图像的艺术风格转移到另一幅图像。但神经风格迁移存在两个缺陷,因此许多论文和应用针对原始的神经风格迁移的缺点进行了改进。
去噪自编码器 (Denoising Autoencoder, DAE) 的目的就是用来去除图像中的噪声。本文将利用Tensorflow2实现使用 MNIST 数据集的 DAE。
在生成对抗网络中使用 BN 会导致生成图片在一定程度上出现同质化的缺点。利用条件批归一化可以解决此问题,本文讲解了条件批归一化,并使用TensorFlow2进行实现。
GauGAN的主要创新是用于分割图的层归一化方法,称为空间自适应归一化(Spatial Adaptive Normalization, SPADE)。自此,GAN归一化家族中又添加了一新秀归一化技术。
自编码器的基本构建块是编码器和解码器。编码器负责将高维输入减少为一些低维潜(隐)变量。解码器是将隐变量转换回高维空间的模块。本文对自编码器的原理进行详解,同时使用tensorflow2实现自编码器。
神经风格迁移使用CNN将一幅图像的艺术风格转移到另一幅图像。神经风格迁移仅需要两个图像——内容图像和样式图像。可以使用经过训练的CNN模型(例如VGG)将风格从风格图像迁移到内容图像上。
本文使用MNIST数据集和Tensorflow构建简单的全连接网络,利用遗传算法优化隐藏层数和每层的节点数,使用的原理同样适用于更复杂的网络和数据集。
在2D统计图统计图中再添加一个维度可以展示更多信息。而且,在进行常规汇报或演讲时,3D图形也可以吸引更多的注意力。在本文中,我们将探讨利用Matplotlib绘制三维统计图。
我们已经学习了一系列统计图来描绘两个变量间的基本关系,但是,仅仅使用这些图形并不足以应对所有场景。例如,需要显示降雨在各个地区的分布情况。因此,我们需要更多的实用图形来表达现实世界的复杂关系。
Matplotlib可以将任何图形渲染为各种常见的文件格式,如PNG、EPS、SVG和PDF。在本文中,将探讨Matplotlib的文件输出功能,还将学习如何控制输出的分辨率和大小以及透明度等。
图形的比例对于统计图而言至关重要,好的图形比例可以让人方便的获取图形中相关数据间的关系,因此设置图形比例对于统计图而言是至关重要的,本文介绍如何使用Maplotlib修改统计图比例。
有时,我们希望检查数据的多个方面间的关系,例如我们不仅希望得到时间与温度的关系,同时我们也需要关注时间与风力等方面之间的关系,Matplotlib提供了将多个图形组合在一起的方法。
当可视化的数据变化范围非常广时,如果仍然使用常规的坐标轴刻度,将导致无法看到数据的变化趋势,这时,使用对数刻度就可以对图形进行更好的展示。而使用极坐标则可以展示有关角度的图形。
进行作图时需要对坐标轴进行标注,以满足学习或工作的要求,使统计图变得清晰简洁。借助Matplotlib库,可以方便的对进行数据分析,快速完成数据可视化。
绘制图形时我们还需要绘制复杂形状,以使统计图看起来更加高级,考虑到这一需求,Matplotlib提供了大量自定义形状的函数,利用可以在统计图中添加各种复杂形状,以使得所绘制的统计图更加具有高级感。
当我们查看图形时,可能需要快速估计出图形中某一部分的坐标,这时,向图形中添加辅助网格或辅助线将是一种提高图形可读性的良好方法。
如果没有注释,我们很难让其他人明白图中的点、线究竟代表着什么,有什么样的含义,Matplotlib提供了大量对图形进行注释的方法,利用这些注释使统计图变得通俗易懂。
在图形中添加说明文本,可以用于凸显图中点或线的重要性,本文,通过讲解如何使用Matplotlib在图形中添加文本说明,来实战展示文本说明的重要性。
matplotlib提供的所有绘图都带有默认样式,但有时需要自定义绘图的颜色和样式,以绘制更加符合审美要求的图像。matplotlib的设计考虑到了此需求,很容易调整matplotlib图形的样式。
在Matplotlib可视化实践中,除了颜色,大多数情况下我们还要对图形的线条样式等进行控制,以为线条样式添加多样性。
matplotlib 提供的所有绘图都带有默认样式,但有时可能需要自定义绘图的颜色和样式,以对绘制更加精美、符合审美要求的图像。
Matplotlib 是 Python 的绘图库,使绘图变得非常简单,在易用性和性能间取得了优异的平衡。借助 Matplotlib 库,可以方便的对进行数据分析,快速完成数据可视化。
条形图具有丰富的表现形式,常见的类型包括单组条形图,多组条形图,堆积条形图和对称条形图等。本文利用Matplotlib绘制常见条形图。
图着色任务可以简单概括为:为图中的每个节点分配一种颜色,并保证相连接的节点对不会使用相同的颜色,同时,我们希望使用尽可能少的颜色。本文使用遗传算法解决图着色问题。
经典的N皇后问题起源于国际象棋。任务是将八名皇后放置在棋盘上,而且他们中的任何两个都不互相构成威胁。换句话说,没有两个皇后可以在同一行、同一列或同一对角线。本文使用遗传算法解决N皇后问题。
遗传算法(Genetic Algorithm, GA)是受自然进化原理启发的一系列搜索算法。通过模仿自然选择和繁殖的过程,遗传算法可以为涉及搜索、优化和学习的各种问题提供高质量的解决方案。同时,它们类似于自然进化,因此遗传算法可以克服传统搜索和优化算法遇到的一些障碍,尤其是对于具有大量参数和复杂数学表示形式的问题。
deap(Distributed Evolutionary Algorithms in Python)是用于创建遗传算法实现的python库,框架支持使用遗传算法以及其他进化计算技术快速开发解决方案。DEAP提供了各种数据结构和工具,这些数据结构和工具在实现各种基于遗传算法的解决方案时必不可少。
遗传算法实践,利用遗传算法框架deap解决OneMax问题,OneMax(或One-Max)问题是一个简单的优化任务,通常用作遗传算法框架的Hello World。
将选择,交叉和突变遗传算子应用到种群中,就产生了新一代,该新一代基于当前代中较好的个体。选择(selection)操作负责当前种群中选择有优势的个体。交叉(crossover,或重组,recombination)操作从选定的个体创建后代。这通常是通过两个被选定的个体互换他们染色体的一部分以创建代表后代的两个新染色体来完成的。变异(mutation)操作可以将每个新创建个体的一个或多个染色体值(基因)随机进行变化。