暂无个人介绍
能力说明:
掌握计算机基础知识,初步了解Linux系统特性、安装步骤以及基本命令和操作;具备计算机基础网络知识与数据通信基础知识。
暂时未有相关云产品技术能力~
阿里云技能认证
详细说明背景Kubernetes从1.8开始引入了Device Plugin机制,用于第三方设备厂商以插件化的方式将设备资源(GPU、RDMA、FPGA、InfiniBand等)接入Kubernetes集群中。用户无需修改Kubernetes代码,只需在集群中以DaemonSet方式部署设备厂商提供的插件,然后在Pod中申明使用该资源的使用量,容器在启动成功后,便可在容器中发现该设备。然而,随着Kuber
背景Kubernetes 1.26开始引入DRA( Dynamic Resource Allocation,动态资源分配),用于解决Kubernetes现有Device Plugin机制的不足。相比于现有的Device Plugin机制,DRA更加开放和自主,能够满足一些复杂的使用场景。NVIDIA、Intel这些设备厂商也基于DRA开放自己下一代Device Plugin,以期满足更复杂的业务场
CDI介绍什么是CDICDI(Container Device Interface)是Container Runtimes支持挂载第三方设备(比如:GPU、FPGA等)机制。它引入了设备作为资源的抽象概念,这类设备由一个完全限定的名称唯一指定,该名称由设备商ID,设备类别与一个设备类别下的一个唯一名称组成,格式如下:vendor.com/class=unique_name设备商ID和设备类型(ve
本系列相关文章:阿里云容器服务GPU监控2.0基础篇1:基本功能使用阿里云容器服务GPU监控2.0基础篇2:监控NVLINK带宽阿里云容器服务GPU监控2.0基础篇3:监控NVIDIA XID错误阿里云容器服务GPU监控2.0进阶篇1:剖析(Profiling)GPU使用情况必备知识阿里云容器服务GPU监控2.0进阶篇2:学会剖析(Profiling)GPU使用情况容器服务GPU监控2.0提供了监
ACK Pro集群支持为应用申请GPU显存和算力,能够帮助您更精细化的使用GPU的显存和算力资源。本文介绍如何使用算力分配功能。前提条件已创建ACK Pro版集群,且集群版本为1.20.11。关于Kubernetes的升级操作,请参见升级ACK集群K8s版本。已安装共享GPU组件,且Chart版本>1.2.0。关于安装共享GPU组件的具体操作,请参见安装并使用共享GPU组件和资源工具。cGP
ACK Pro集群支持为应用申请GPU显存和算力,能够帮助您更精细化的使用GPU的显存和算力资源。本文介绍如何使用算力分配功能。前提条件已创建ACK Pro版集群,且集群版本为1.20.11。关于Kubernetes的升级操作,请参见升级ACK集群K8s版本。已安装共享GPU组件,且Chart版本>1.2.0。关于安装共享GPU组件的具体操作,请参见安装并使用共享GPU组件和资源工具。cGP
本系列相关文章:阿里云容器服务GPU监控2.0基础篇1:基本功能使用阿里云容器服务GPU监控2.0基础篇2:监控NVLINK带宽阿里云容器服务GPU监控2.0基础篇3:监控NVIDIA XID错误阿里云容器服务GPU监控2.0进阶篇1:剖析(Profiling)GPU使用情况必备知识阿里云容器服务GPU监控2.0进阶篇2:学会剖析(Profiling)GPU使用情况容器服务GPU监控2.0基于NV
本系列相关文章:阿里云容器服务GPU监控2.0基础篇1:基本功能使用阿里云容器服务GPU监控2.0基础篇2:监控NVLINK带宽阿里云容器服务GPU监控2.0基础篇3:监控NVIDIA XID错误阿里云容器服务GPU监控2.0进阶篇1:剖析(Profiling)GPU使用情况必备知识阿里云容器服务GPU监控2.0进阶篇2:学会剖析(Profiling)GPU使用情况本篇文章将向您介绍如何使用GPU
本系列相关文章:阿里云容器服务GPU监控2.0基础篇1:基本功能使用阿里云容器服务GPU监控2.0基础篇2:监控NVLINK带宽阿里云容器服务GPU监控2.0基础篇3:监控NVIDIA XID错误阿里云容器服务GPU监控2.0进阶篇1:剖析(Profiling)GPU使用情况必备知识阿里云容器服务GPU监控2.0进阶篇2:学会剖析(Profiling)GPU使用情况基于NVIDIA DCGM的GP
本系列相关文章:阿里云容器服务GPU监控2.0基础篇1:基本功能使用阿里云容器服务GPU监控2.0基础篇2:监控NVLINK带宽阿里云容器服务GPU监控2.0基础篇3:监控NVIDIA XID错误阿里云容器服务GPU监控2.0进阶篇1:剖析(Profiling)GPU使用情况必备知识阿里云容器服务GPU监控2.0进阶篇2:学会剖析(Profiling)GPU使用情况为了能够更深入理解GPU Pro
背景我们知道,如果在Kubernetes中支持GPU设备调度,需要做如下的工作:节点上安装nvidia驱动节点上安装nvidia-docker集群部署gpu device plugin,用于为调度到该节点的pod分配GPU设备。除此之外,如果你需要监控集群GPU资源使用情况,你可能还需要安装DCCM exporter结合Prometheus输出GPU资源监控信息。要安装和管理这么多的组件,对于运维
背景我们知道,如果在Kubernetes中支持GPU设备调度,需要做如下的工作:节点上安装nvidia驱动节点上安装nvidia-docker集群部署gpu device plugin,用于为调度到该节点的pod分配GPU设备。除此之外,如果你需要监控集群GPU资源使用情况,你可能还需要安装DCCM exporter结合Prometheus输出GPU资源监控信息。要安装和管理这么多的组件,对于运维
背景我们知道,如果在Kubernetes中支持GPU设备调度,需要做如下的工作:节点上安装nvidia驱动节点上安装nvidia-docker集群部署gpu device plugin,用于为调度到该节点的pod分配GPU设备。除此之外,如果你需要监控集群GPU资源使用情况,你可能还需要安装DCCM exporter结合Prometheus输出GPU资源监控信息。要安装和管理这么多的组件,对于运维
背景我们知道,如果在Kubernetes中支持GPU设备调度,需要做如下的工作:节点上安装nvidia驱动节点上安装nvidia-docker集群部署gpu device plugin,用于为调度到该节点的pod分配GPU设备。除此之外,如果你需要监控集群GPU资源使用情况,你可能还需要安装DCCM exporter结合Prometheus输出GPU资源监控信息。要安装和管理这么多的组件,对于运维
背景我们知道,如果在Kubernetes中支持GPU设备调度,需要做如下的工作:节点上安装nvidia驱动节点上安装nvidia-docker集群部署gpu device plugin,用于为调度到该节点的pod分配GPU设备。除此之外,如果你需要监控集群GPU资源使用情况,你可能还需要安装DCCM exporter结合Prometheus输出GPU资源监控信息。要安装和管理这么多的组件,对于运维
背景我们知道,如果在Kubernetes中支持GPU设备调度,需要做如下的工作:节点上安装nvidia驱动节点上安装nvidia-docker集群部署gpu device plugin,用于为调度到该节点的pod分配GPU设备。除此之外,如果你需要监控集群GPU资源使用情况,你可能还需要安装DCCM exporter结合Prometheus输出GPU资源监控信息。要安装和管理这么多的组件,对于运维
背景我们知道,如果在Kubernetes中支持GPU设备调度,需要做如下的工作:节点上安装nvidia驱动节点上安装nvidia-docker集群部署gpu device plugin,用于为调度到该节点的pod分配GPU设备。除此之外,如果你需要监控集群GPU资源使用情况,你可能还需要安装DCCM exporter结合Prometheus输出GPU资源监控信息。要安装和管理这么多的组件,对于运维
Topology Manager是kubelet的一个组件,在kubernetes 1.16加入,而kubernetes 1.18中该feature变为beta版。本篇文档将分析Topology Manager的具体工作原理。1.为什么需要Topology Manager现代计算机的CPU架构多采用NUMA(Non-Uniform Memory Access,非统一内存)架构。NUMA就是将cpu
本文档主要说明怎样在k8s上用alluxio加速spark的数据访问。文档将演示结合spark、alluxio和k8s完成一个对文件单词进行计数的任务。在实验中,我们将开启alluxio的short-circuit的功能,验证spark executor与alluxio worker之间的通信是否通过domain socket方式完成。
本文档主要说明怎样在k8s上用alluxio加速spark的数据访问。文档将演示结合spark、alluxio和k8s完成一个对文件单词进行计数的任务。在实验中,我们将关闭alluxio的short-circuit的功能,验证spark executor与alluxio worker之间的通信是否通过网络栈完成。