暂无个人介绍
本文介绍了一个多租户平台的构建,旨在解决权限隔离和数据独立性问题。平台采用FastAPI、Celery+Redis、PostgreSQL多schema、Requests+代理IP和JWT+RBAC技术,实现了任务隔离、代理独立和数据分区。项目强调了多租户系统在任务独立、代理隔离、数据分区和权限控制方面的复杂性,并提出了进一步扩展
本文探讨了高并发数据采集中避免重复URL抓取的问题,提出了结合Bloom Filter、Redis HyperLogLog和持久化备份的解决方案,实现了快速查重、准确统计和数据恢复。
本文深入探讨现代网页数据抓取的挑战与突破,揭示网页“行为语言”的三大隐藏层。通过结合静态解析与动态模拟的混合抽取框架,实现对复杂网页的精准抓取,展现从规则驱动到行为理解的技术演进,倡导以共生思维重构数据采集的本质。
随着小红书、抖音等视觉平台崛起,传统采集难以应对图像视频内容。本文详解多模态采集架构:通过OCR识别图文、关键帧抽取视频信息,结合元数据融合,实现对视觉内容的精准理解与结构化提取,推动数据采集从“抓取”迈向“认知”。
本文讲述了作者在房地产数据采集项目中遇到的分布式数据同步问题,通过实施一致性、去重和冲突解决的“三板斧”策略,成功解决了数据重复和同步延迟问题,提高了系统稳定性。核心在于时间戳哈希保证一致性,URL归一化和布隆过滤器确保去重,分布式锁解决写入冲突。
本文设计了一套秒级实时行情推送系统,涵盖触发、采集、缓冲、入库与推送五层架构,结合动态代理IP、Kafka/Redis缓冲及WebSocket推送,实现金融数据低延迟、高并发处理,适用于股票、数字货币等实时行情场景。
本文讲述了作者在大规模爬虫项目中遇到的挑战,包括任务堆积、高失败率和成本失控。通过将爬虫项目迁移到Kubernetes并使用HPA自动伸缩、代理池隔离和Redis队列,作者成功解决了这些问题,提高了性能,降低了成本,并实现了系统的弹性伸缩。最终,作者通过这次改造学到了性能、代理隔离和成本控制的重要性。
结合爬虫与大模型,打造懂语义的学术检索助手:自动抓取最新NLP+爬虫论文,经清洗、向量化与RAG增强,由LLM提炼贡献,告别关键词匹配,实现精准智能问答。
本项目将单机Playwright爬虫逐步演进为分布式集群,解决脚本不稳定、限速、维护难等问题。以招聘数据采集为例,实现从页面解析、代理IP轮换、Redis任务队列到多机并发的完整链路,结合MongoDB/Elasticsearch落库与可视化,形成可复用的生产级爬虫架构,适用于数据分析、岗位监控等场景。
本文从工程实践出发,探讨爬虫系统的可控性设计,围绕IP管理、请求节奏、用户模拟、异常重试与任务调度五大维度,对比固定代理与动态代理池等方案的优劣,结合代码示例给出不同场景下的实战建议,助力构建稳定、可维护的长期爬虫系统。
本文介绍了一个足球比赛信息提取教程,利用生成式AI从ESPN、虎扑、腾讯体育等网站抓取比赛报道,抽取比分、关键事件和球员表现等信息。步骤包括采集、清洗、分块、调用LLM抽取、校验与落地,以及可视化。需要准备Python环境、安装依赖库,并遵循合规性。提供了示例代码,演示如何从网页抓取文本并调用LLM接口获得结构化输出。
本文深入探讨网页信息抽取技术的演进,从传统 XPath/CSS 结构匹配,到结合 LLM(大语言模型)的语义理解方法。分析了旧技术在动态渲染、结构变化和语义识别方面的局限,并通过架构图、实验数据和示例代码展示 LLM 在新闻、电商、社交等复杂场景中的高效应用。同时强调爬虫代理等基础设施的重要性,为信息抓取提供稳定网络环境。
本文探讨了数据领域中理解“伪装网页”的重要性,指出直接抓取网页源代码常因动态加载而无法获取关键信息。通过Amazon案例,文章展示了如何优化请求头配置、使用代理服务和分析数据来源,以获取真正有用的信息。
该方案设计了一个跨站点的增量更新引擎,用于高效采集央视新闻、中国新闻网和环球网等多源新闻数据。通过代理IP和内容哈希签名技术,实现新闻的新增与更新检测,大幅降低冗余抓取和带宽消耗。实验表明,该方法在多源新闻采集中具备高效性和实用性,可拓展为行业级舆情雷达系统,支持事件追踪与趋势分析。
本文讲述了作者在爬取豆瓣影评过程中遇到的挑战与解决方案。面对链接结构不统一、字段格式多变等问题,作者通过正则表达式抽象出通用规则,并结合爬虫代理实现稳定采集。最终不仅完成了任务,更收获了“以模式化思维应对变化”的宝贵经验。
本文对比了爬虫项目中“招聘市场监测”与“金融数据采集”两类场景下的任务调度策略,介绍了何时使用简单队列、何时采用复杂流转,并提供 Python 示例代码及代理配置建议,助你高效构建爬虫系统。
在科研信息采集过程中,自动化获取论文元数据(如标题、作者、引用等)已成为刚需。本文以 Scopus 和 CNKI 为例,详解两种主流抓取方式:一是直接解析 HTML 获取浅层数据,二是通过模拟交互提取深层内容,并结合代理服务绕过访问限制,实现高效稳定的数据采集。
在舆情监控与数据分析中,单机脚本适合小规模采集如微博热榜,而小红书等大规模、高时效性需求则需分布式架构。通过Redis队列、代理IP与多节点协作,可提升采集效率与稳定性,适应数据规模与变化速度。架构选择应根据实际需求,兼顾扩展性与维护成本。
本文以链家二手房数据采集为例,探讨全量抓取与增量采集的优劣与适用场景,并结合代理IP技术实现高效、稳定的爬虫方案。通过SQLite/PostgreSQL存储、内容哈希去重、定时任务调度等手段,构建可持续运行的数据更新与统计系统。适用于房产数据分析、市场监测等场景,兼顾资源效率与数据质量。
本案例讲述了在豆瓣电影数据采集过程中,面对数据量激增和限制机制带来的挑战,如何通过引入爬虫代理、分布式架构与异步IO等技术手段,实现采集系统的优化与扩展,最终支撑起百万级请求的稳定抓取。
本文分享了一次使用高并发与代理池爬取头条新闻热点数据的实战经验,深入剖析了因并发控制不当导致的数据抓取效率低下的问题,并提供了具体的优化方案与完整代码实现。
本文分享了如何通过 Python 稳定抓取 51Job 等招聘网站的分页数据。使用 `requests` 和 `BeautifulSoup` 解析网页,结合代理服务与随机延迟策略,有效避免被限制请求,并将数据存入数据库进行后续分析。附完整代码与实战经验总结,适合有分页爬取需求的开发者参考。
证券级信息精准监测系统,具备雷达感知能力,实时探测网页变动,快速响应公告更新,助力投资决策抢占先机。
本教程教你如何构建一个模块化、可扩展的某博热搜采集系统,涵盖代理配置、多线程加速与数据提取,助你高效掌握网络舆情分析技巧。
页面结构对信息提取方式有重要影响,本文分析三种主流结构类型及应对策略,结合代码实例对比静态页面、动态页面与接口型页面的处理方法,帮助开发者快速选择合适方案,提升数据采集效率。
本项目针对东方财富股吧设计精细化采集方案,解决重复采集、调度混乱与反爬等问题,构建舆情分析数据模型。通过采集帖子内容、用户行为与情绪信号,实现情绪趋势可视化、热点识别与个股预警,助力把握市场风向。
本文介绍了如何利用 Common Crawl 项目获取历史网页快照,并通过 Python 实现快照下载、HTML 解析与结构化提取。结合爬虫代理和请求设置,帮助用户高效稳定地进行历史网页数据分析,适用于品牌追踪、内容对比等场景。
本文介绍了一个面向电子行业的自动化信息采集系统,以Digikey平台为例,实现从关键词搜索、代理请求、页面解析到数据存储的全流程抓取。系统采用模块化设计,支持定时采集与数据归档,助力企业提升采购决策效率与数据化水平。
本文介绍了一个针对高频新闻站点的分布式爬虫系统优化方案。通过引入异步任务机制、本地缓存池、Redis pipeline 批量写入及身份池策略,系统采集效率提升近两倍,数据同步延迟显著降低,实现了分钟级热点追踪能力,为实时舆情监控与分析提供了高效、稳定的数据支持。
本教程详解如何构建自动化分析百度热搜关键词的系统,涵盖代理IP、多线程、任务调度等核心技术,助你打造高效稳定的数据采集引擎。
本文介绍如何通过工程化手段解决数据提取任务中的稳定性与部署难题。结合 Scrapy、Docker、代理中间件与 CI/CD 工具,构建可自动运行、持续迭代的云原生信息提取系统,实现结构化数据采集与标准化交付。
本文介绍一个基于财经场景的微服务化数据采集平台,解决新浪财经等内容站点信息分散、结构多变、更新频繁等痛点。通过代理配置、动态解析、自动分类与容错机制,实现要闻、突发、证券资讯的高效抓取与结构化处理,为舆情监控、NLP分析和投研建模提供实时数据支撑,提升市场响应速度与数据质量。
本文介绍了移动端数据访问限制机制及突破方法,以BOSS直聘为例,详细解析了其数据结构与接口特性。通过比喻“档案馆安保”生动阐述跨域访问限制原理,如身份验证、客户端识别和IP控制等。提供了基于Python的职位信息自动化获取代码示例,使用`requests`库结合代理服务完成数据提取与存储。同时建议学习移动端通信协议、接口分析工具(如mitmproxy)等内容,强调合规访问的重要性。
本文探讨了移动设备上新闻App数据采集的挑战和应对策略。随着App迭代,数据结构变得复杂,今日头条等App的数据多来自动态接口而非静态HTML。应对策略包括界面分析、请求模拟、身份伪装和IP切换。实战案例展示了如何通过H5接口抓取今日头条热门要闻和评论。建议初学者先分析H5页面接口,合理使用代理服务以避免被封锁。文档强调了现代App数据采集需要采用多种技术手段,以应对复杂的数据结构和接口,保证数据采集的稳定性和有效性。
通过自动化工具抓取马蜂窝旅游数据,分析杭州热门景点与用户关注焦点,生成排行榜和词云图。项目采用低成本方案,结合Playwright模拟浏览器行为采集信息,并用Python处理数据、绘制图表。结果显示西湖、灵隐寺等为热门景点,游客多关注门票、交通等问题。此方法简单高效,适合个性化旅行攻略分析。
这是一套用于自动抓取小红书热门视频内容的工具脚本,支持通过关键词搜索提取前3名视频的封面图、视频文件及基本信息(标题、作者、发布时间)。适用于品牌营销分析、热点追踪或图像处理等场景。脚本包含代理配置、接口调用和文件下载功能,并提供扩展建议如图像识别与情绪分析。适合需要高效采集小红书数据的团队或个人使用,稳定性和灵活性兼备。
本文探讨了使用NLP技术进行网页商品数据抽取时遇到的三大瓶颈:请求延迟高、结构解析慢和分类精度低,并以目标站点goofish.com为例,展示了传统方法在采集商品信息时的性能问题。通过引入爬虫代理降低封禁概率、模拟真实用户行为优化请求,以及利用关键词提取提升分类准确性,实现了请求成功率从65%提升至98%,平均请求耗时减少72.7%,NLP分类错误率下降73.6%的显著优化效果。最终,代码实现快速抓取并解析商品数据,支持价格统计与关键词分析,为构建智能推荐模型奠定了基础。
本文介绍了在现代互联网中,传统DOM爬虫难以应对动态加载和视觉驱动内容的问题,并提出了“视觉爬虫”的解决方案。通过Puppeteer实现浏览器自动化,结合计算机视觉技术完成页面元素的动态定位与信息提取。文章对比了DOM爬虫与视觉爬虫的技术特点,展示了基于Node.js的核心代码示例,用于小红书平台的视频搜索、播放及截图处理。最后指出,视觉爬虫能够突破传统限制,在强JS渲染和动态内容场景中更具优势,为数据采集提供了新方向。
随着Web技术发展,动态加载数据的网站(如今日头条)对传统爬虫提出新挑战:初始HTML无完整数据、请求路径动态生成且易触发反爬策略。本文以爬取“AI”相关新闻为例,探讨了通过浏览器自动化、抓包分析和静态逆向接口等方法采集数据的局限性,并提出借助机器学习智能识别AJAX触发点的解决方案。通过特征提取与模型训练,爬虫可自动推测数据接口路径并高效采集。代码实现展示了如何模拟AJAX请求获取新闻标题、简介、作者和时间,并分类存储。未来,智能化将成为采集技术的发展趋势。
本文介绍了一套基于微博热帖的中文非结构化文本分析系统,通过爬虫代理采集数据,结合NLP技术实现实体识别、关系抽取及情感分析。核心技术包括爬虫模块、请求配置、页面采集和中文NLP处理,最终将数据结构化并保存为CSV文件或生成图谱。代码示例从基础正则规则到高级深度学习模型(如BERT-BiLSTM-CRF)逐步演进,适合初学者与进阶用户调试与扩展,展现了中文NLP在实际场景中的应用价值。
本文介绍了一次二手车数据爬虫事故的解决过程,从传统XPath方案失效到结合深度学习语义提取的成功实践。面对懂车帝平台的前端异步渲染和复杂DOM结构,通过Playwright动态渲染、代理IP隐藏身份,以及BERT模型对HTML块级语义识别,实现了稳定高效的字段提取。此方法抗结构变化能力强,适用于复杂网页数据采集,如二手车、新闻等领域。架构演进从静态爬虫到动态爬虫再到语义解析,显著提升效率与稳定性。
本教程介绍如何在 Kubernetes 上构建可扩展的爬虫系统,解决传统单机爬虫瓶颈。核心内容包括:使用 Docker 打包爬虫任务、RabbitMQ 实现任务队列、爬虫代理防限制、随机 User-Agent 模拟请求,以及通过 Horizontal Pod Autoscaler (HPA) 实现根据任务压力自动扩缩容。适合需要处理大规模网页采集的开发者学习与实践。
随着互联网数据采集需求的增长,传统爬虫架构因固定IP易封禁、资源浪费及扩展性差等问题逐渐显现。本文提出基于Serverless与代理IP技术的新一代爬虫方案,通过动态轮换IP、弹性调度任务等特性,显著提升启动效率、降低成本并增强并发能力。架构图与代码示例详细展示了其工作原理,性能对比数据显示采集成功率从71%提升至92%。行业案例表明,该方案在电商情报与价格对比平台中效果显著,未来有望成为主流趋势。
本文详细讲解了如何通过技术手段破解浏览器 `navigator.webdriver` 检测,结合爬虫代理、多线程等策略,在豆瓣图书页面批量采集数据。具体包括:隐藏 Selenium 特征、配置代理突破 IP 限制、设置伪装用户、利用多线程提升效率。文章面向初学者,提供分步教程与示例代码,同时设有「陷阱警告」帮助规避常见问题。目标是从底层实现反检测,高效采集图书评分、简介、作者等信息,适合具备 Python 和 Selenium 基础的读者实践学习。
本文以反面教材形式,剖析了在使用 Playwright 爬取懂车帝车友圈问答数据时常见的配置错误(如未设置代理、Cookie 和 User-Agent),并提供了 Python、Java 和 .NET 三种语言的修复代码示例。通过错误示例 → 问题剖析 → 修复过程 → 总结教训的完整流程,帮助读者掌握如何正确配置爬虫代理及其它必要参数,避免 IP 封禁和反爬检测,实现高效数据采集与分析。
本文介绍了如何借助 Postman 调试工具快速生成 Python 爬虫代码,并结合爬虫代理实现高效数据采集。文章通过“跨界混搭”结构,先讲解 Postman 的 API 调试功能,再映射到 Python 爬虫技术,重点分享三大技巧:利用 Postman 生成请求骨架、通过 Session 管理 Cookie 和 User-Agent,以及集成代理 IP 提升稳定性。以票务信息采集为例,展示完整实现流程,探讨其在抗封锁、团队协作等方面的价值,帮助开发者快速构建生产级爬虫代码。
本文基于Feapder框架,从零开始搭建企业级招聘信息爬虫管道。内容涵盖基础概念(数据管道与Feapder特点)、生动比喻(快递系统类比爬虫流程)、技术场景(代理IP、Cookie管理)及实战案例(采集51job岗位信息并分类存储)。通过完整代码示例,展示如何配置代理、自定义中间件及Pipeline。无论产品经理还是学生,均可轻松上手,构建高效稳定的爬虫系统。
本文对比了 Parsel 和 BeautifulSoup 两种 Python HTML 解析库的性能、用法与生态差异,结合 eastmoney.com 财经新闻爬取实战,演示配置代理 IP、分类存储数据等技巧。文章从解析库选型要点出发,通过性能对比(Parsel 更快但上手难,BeautifulSoup 简洁易用)、图谱展示及路线建议,帮助开发者根据需求选择合适工具。适合高性能抓取时用 Parsel,快速开发则用 BeautifulSoup,并可混合使用或扩展至 Scrapy 框架。
本文从电商行业数据采集痛点出发,结合 Pyppeteer 高并发无头浏览器技术,打造可配置代理的高效采集方案。通过爬虫代理突破 IP 限制,模拟真实用户行为,实现 Amazon 特价商品数据的稳定抓取与分析。代码示例详细展示了代理集成、并发控制及数据处理流程,实验验证效率提升超 4 倍。该方案助力商业决策、竞品分析,并支持技术扩展与创新应用。
本文分享了通过强化学习解决抖音爬虫限速问题的技术实践。针对固定速率请求易被封禁的问题,引入基于DQN的动态请求间隔控制算法,智能调整请求间隔以平衡效率与稳定性。文中详细描述了真实经历、问题分析、技术突破及代码实现,包括代理配置、状态设计与奖励机制,并反思成长,提出未来优化方向。此方法具通用性,适用于多种动态节奏控制场景。
发表了文章
2025-11-26
发表了文章
2025-11-25
发表了文章
2025-11-24
发表了文章
2025-11-17
发表了文章
2025-11-11
发表了文章
2025-11-06
发表了文章
2025-11-05
发表了文章
2025-11-04
发表了文章
2025-10-30
发表了文章
2025-10-13
发表了文章
2025-09-28
发表了文章
2025-09-25
发表了文章
2025-09-24
发表了文章
2025-09-23
发表了文章
2025-09-22
发表了文章
2025-09-17
发表了文章
2025-09-17
发表了文章
2025-09-11
发表了文章
2025-09-09
发表了文章
2025-09-08