暂时未有相关云产品技术能力~
暂无个人介绍
人工智能和机器人技术正在以前所未有的速度发展,对社会和经济产生深刻影响。本文将探讨人工智能和机器人领域的未来趋势和发展方向,重点关注以下几个方面:通用人工智能、人机协作、强化学习、迁移学习、边缘计算以及道德和法律议题。
端到端学习:端到端学习也称为端到端训练,指在训练过程中,我们不需要考虑中间各个环节的功能,也不需要人为干预中间环节,我们只关注输入与输出。就像一个黑盒,黑盒中的任何东西我们都不关注,我们只关注将什么输入黑盒,从黑盒中输出了什么。同样的,端到端学习也需要解决贡献度分配问题,目前,大多数的神经网络也可被视为端到端学习。
目前,深度学习采用的模型主要是神经网络,因为神经网络模型可以通过误差反向传播算法很好的解决贡献度分配问题。只要是超过1层的神经网络均存在公信度分配问题,因此超过1层的神经网络均可看成深度学习模型。
第一部分 人工智能概述 一、人工智能相关
随着科技发展,人工智能技术在教育领域中的应用已取得较大进展。近年来,人工智能(AI)技术和由其引发的大数据时代自社会的各个层面包括我们的思维、生活方式和工作模式产生了巨大的变革;其与医学的结合给医疗系统带来深远的影响。从互联网到云计算,再到由大数据集合而成的人工智能,不断更新的处理手段使医疗行业也开始尝试新的转变,从传统的人工诊疗、教学模式逐步转变为依据机器学习来获取更高效的信息,并在医学多个领域已有比较广泛的应用。本文将从人工智能在医学领域的优势、当前的进展、应用、局限性和未来方向来进行综述。
随着科技发展,人工智能技术在教育领域中的应用已取得较大进展。近年来,人工智能(AI)技术和由其引发的大数据时代自社会的各个层面包括我们的思维、生活方式和工作模式产生了巨大的变革;其与医学的结合给医疗系统带来深远的影响。从互联网到云计算,再到由大数据集合而成的人工智能,不断更新的处理手段使医疗行业也开始尝试新的转变,从传统的人工诊疗、教学模式逐步转变为依据机器学习来获取更高效的信息,并在医学多个领域已有比较广泛的应用。本文将从人工智能在医学领域的优势、当前的进展、应用、局限性和未来方向来进行综述。
随着科技发展,人工智能技术在教育领域中的应用已取得较大进展。近年来,人工智能(AI)技术和由其引发的大数据时代自社会的各个层面包括我们的思维、生活方式和工作模式产生了巨大的变革;其与医学的结合给医疗系统带来深远的影响。从互联网到云计算,再到由大数据集合而成的人工智能,不断更新的处理手段使医疗行业也开始尝试新的转变,从传统的人工诊疗、教学模式逐步转变为依据机器学习来获取更高效的信息,并在医学多个领域已有比较广泛的应用。本文将从人工智能在医学领域的优势、当前的进展、应用、局限性和未来方向来进行综述。
随着科技发展,人工智能技术在教育领域中的应用已取得较大进展。近年来,人工智能(AI)技术和由其引发的大数据时代自社会的各个层面包括我们的思维、生活方式和工作模式产生了巨大的变革;其与医学的结合给医疗系统带来深远的影响。从互联网到云计算,再到由大数据集合而成的人工智能,不断更新的处理手段使医疗行业也开始尝试新的转变,从传统的人工诊疗、教学模式逐步转变为依据机器学习来获取更高效的信息,并在医学多个领域已有比较广泛的应用。本文将从人工智能在医学领域的优势、当前的进展、应用、局限性和未来方向来进行综述。
随着科技发展,人工智能技术在教育领域中的应用已取得较大进展。近年来,人工智能(AI)技术和由其引发的大数据时代自社会的各个层面包括我们的思维、生活方式和工作模式产生了巨大的变革;其与医学的结合给医疗系统带来深远的影响。从互联网到云计算,再到由大数据集合而成的人工智能,不断更新的处理手段使医疗行业也开始尝试新的转变,从传统的人工诊疗、教学模式逐步转变为依据机器学习来获取更高效的信息,并在医学多个领域已有比较广泛的应用。本文将从人工智能在医学领域的优势、当前的进展、应用、局限性和未来方向来进行综述。
人工智能(Artificial Intelligence,AI)的执行指南讲述,从机器学习和通用人工智能到神经网
人工智能(Artificial Intelligence,AI)的执行指南讲述,从机器学习和通用人工智能到神经网
人工智能(Artificial Intelligence,AI)的执行指南讲述,从机器学习和通用人工智能到神经网
人工智能(Artificial Intelligence,AI)的执行指南讲述,从机器学习和通用人工智能到神经网
1.1.3 人工智能多元化 2 什么是ChatGPT 2.1 ChatGPT的主要功能 2.2ChatGPT对企业的多种优势 2.3 不必担心ChatGPT带来的焦虑
1 人工智能的发展 1.1人工智能发展历程 1.1.1 人工智能的起源 1.1.2 人工智能发展的起起伏伏 1.1.3 人工智能多元化
1 人工智能的发展 1.1人工智能发展历程 1.1.1 人工智能的起源 1.1.2 人工智能发展的起起伏伏 1.1.3 人工智能多元化
4.3 训练过程 虽然经过上述过程,ChatGPT已经可以自主的组织句子回答了。但如果没有适当的指导,该模型也可能生成不真实或者负面的输出。
该模型经过训练,可以在给定输入Token序列的情况下预测下一个Token。它能够生成语法正确且语义类似于其所训练的互联网数据的结构化文本。
3.4 显卡 = 算力 如同上文所说的一样,虽然神经网络的研究在上世纪60年代就有一定的基础了。但一直迟迟没有发展起来的原因就是,因为缺了两样东西:算力和数据。神经网络中的每一个神经元,虽然不用算的非常精细,但需要大量的同时计算。巧妇难为无米之炊。计算并不复杂,都是加法和乘法,但运算量特别复杂。比如一个图片 800 x 600(像素点) = 144000 像素点。如果用三层卷积核(因为RGB是3)去做卷积,大概需要1300万次乘法 + 1200万次加法。这对当时的 CPU 是难以胜任的,甚至现在的CPU也做不了。这就需要 GPU 来展现身手了,我们知道 GPU 是用来做图形计算的。比如播放一个
4.2 生成过程 4.3 训练过程 4.4 Prompt 五、总结
3.3 模型 = 黑匣子 3.4 显卡 = 算力 四、ChatGPT 原理 4.1 LLM
三、深度学习 3.1 神经网络 3.2 CNN
一、人工智能历史 二、机器学习 2.1 预测函数 2.2 代价函数 2.3 梯度计算
困难和挑战 总结
技术发展历程` 目前形式 领跑人
技术发展历程` 目前形式 领跑人
序言 AUS的现有应用 从概念到现实的飞跃
四、机器学习
三、数据分析
前言
大模型的优点和不足 影响 个人观点
AI大模型的底层原理 AI大模型解决的问题
AI大模型是什么 AI大模型发展历程
如何优化 ChatGPT? 如何评估 ChatGPT 的性能? 如何部署 ChatGPT?
ChatGPT 从入门到精通 入门
5.学习框架
3.机器学习算法分类 4.机器学习开发流程
2.什么是机器学习 2.1 定义 2.2 解释 2.3 数据集构成
1.人工智能概述 1.1 机器学习、人工智能与深度学习 1.2 机器学习、深度学习能做些什么
4.3.3 人类反馈强化微调效果
3.1 语言模型的技术演进
1.3 背后的金主OpenAI
* 导读 1 ChatGPT是什么?
基本思想 设置不同连接方式的权值并进行存储
更多 AI 应用/插件
Prompt的基本原则 Prompt的编写模式 AI 可以帮助程序员做什么? 技术知识总结 拆解任务 阅读代码/优化代码 代码生成 生成单测 更多 AI 应用/插件
Prompt的基本原则 Prompt的编写模式 AI 可以帮助程序员做什么? 技术知识总结 拆解任务 阅读代码/优化代码 代码生成 生成单测 更多 AI 应用/插件
前言 基础介绍 什么是Prompt? 什么是 Prompt Engineering? 为什么需要 Prompt Engineering? 如何进行 Prompt Engineering? Prompt的基本原则 Prompt的编写模式 AI 可以帮助程序员做什么? 技术知识总结 拆解任务 阅读代码/优化代码 代码生成 生成单测 更多 AI 应用/插件
二、视觉- 语言预训练模型及迁移学习方法 三、智能文档处理技术在工业界的应用与挑战
前言 CCIG技术论坛 内容回顾及探讨 一、人工智能大模型时代的文档识别与理解 1.1 文档分析与识别 介绍 1.2 文档识别历史回顾 1.3 文档的种类与研究问题 1.4 文档识别与理解研究现状 1.5 大模型带来的挑战与机遇 1.5.1 ChatGPT 1.5.2 CPT-4 1.6 文档识别与理解 总结与展望