阿里云百炼xWaytoAGI共学课DAY1 - 必须了解的企业级AI应用开发知识点
本课程旨在介绍阿里云百炼大模型平台的核心功能和应用场景,帮助开发者和技术小白快速上手,体验AI的强大能力,并探索企业级AI应用开发的可能性。
阿里云百炼xWaytoAGI共学课开课:手把手学AI,大咖带你从零搭建AI应用
阿里云百炼xWaytoAGI共学课开课啦。大咖带你从零搭建AI应用,玩转阿里云百炼大模型平台。3天课程,涵盖企业级文本知识库案例、多模态交互应用实操等,适合有开发经验的企业或独立开发者。直播时间:2025年1月7日-9日 20:00,地点:阿里云/WaytoAGI微信视频号。参与课程可赢取定制保温杯、雨伞及磁吸充电宝等奖品。欢迎加入钉钉共学群(群号:101765012406),与百万开发者共学、共享、共实践!
阿里云与零一万物达成战略合作,成立产业大模型联合实验室
阿里云与零一万物达成战略合作,成立“产业大模型联合实验室”。结合双方顶尖研发实力,加速大模型从技术到应用的落地。实验室涵盖技术、业务、人才等板块,通过阿里云百炼平台提供模型服务,针对ToB行业打造全面解决方案,推动大模型在金融、制造、交通等领域的应用,助力AI驱动的产业升级。
阿里云百炼|析言GBI全新发布:联合云上数据库,助力企业轻松实现ChatBI
析言GBI是阿里云推出的一款基于AI的智能数据分析产品,通过自然语言处理实现对话式数据分析。用户无需编写代码,即可轻松进行数据查询、分析和可视化。该产品支持多种数据库连接方式(如MySQL、PostgreSQL等),并提供多版本选择以适应不同业务需求。即将发布的动态规划BI分析功能将进一步提升复杂问题的拆解与综合分析能力。欢迎访问阿里云百炼应用广场体验析言GBI,并享受200次免费问题额度。
ASP.NET Core 中的速率限制中间件
在ASP.NET Core中,速率限制中间件用于控制客户端请求速率,防止服务器过载并提高安全性。通过`AddRateLimiter`注册服务,并配置不同策略如固定窗口、滑动窗口、令牌桶和并发限制。这些策略可在全局、控制器或动作级别应用,支持自定义响应处理。使用中间件`UseRateLimiter`启用限流功能,并可通过属性禁用特定控制器或动作的限流。这有助于有效保护API免受滥用和过载。 欢迎关注我的公众号:Net分享 (239字符)
智能导购AI助手测评 | 替代未来客服的保障方案
阿里云推出的主动式智能导购AI助手,采用Multi-Agent架构,通过规划助理、商品导购助理和历史对话信息,为顾客提供个性化的产品推荐。无论是商家还是顾客,都能从中受益。它不仅帮助顾客在购买不熟悉的产品时做出明智选择,还让商家更高效地服务客户。开发者可快速部署,使用便捷,大大降低AI技术门槛。
通义视觉推理大模型QVQ-72B-preview重磅上线
Qwen团队推出了新成员QVQ-72B-preview,这是一个专注于提升视觉推理能力的实验性研究模型。提升了视觉表示的效率和准确性。它在多模态评测集如MMMU、MathVista和MathVision上表现出色,尤其在数学推理任务中取得了显著进步。尽管如此,该模型仍存在一些局限性,仍在学习和完善中。
使用Qwen2.5+SpringBoot+SpringAI+SpringWebFlux的基于意图识别的多智能体架构方案
本项目旨在解决智能体的“超级入口”问题,通过开发基于意图识别的多智能体框架,实现用户通过单一交互入口使用所有智能体。项目依托阿里开源的Qwen2.5大模型,利用其强大的FunctionCall能力,精准识别用户意图并调用相应智能体。 核心功能包括: - 意图识别:基于Qwen2.5的大模型方法调用能力,准确识别用户意图。 - 业务调用中心:解耦框架与业务逻辑,集中处理业务方法调用,提升系统灵活性。 - 会话管理:支持连续对话,保存用户会话历史,确保上下文连贯性。 - 流式返回:支持打字机效果的流式返回,增强用户体验。 感谢Qwen2.5系列大模型的支持,使项目得以顺利实施。
探索大型语言模型LLM推理全阶段的JSON格式输出限制方法
本篇文章详细讨论了如何确保大型语言模型(LLMs)输出结构化的JSON格式,这对于提高数据处理的自动化程度和系统的互操作性至关重要。
【最佳实践系列】高并发调用百炼语音合成大模型
本文介绍了阿里云百炼的CosyVoice语音合成大模型及其高并发调用优化方案。CosyVoice支持文本到语音的实时流式合成,适用于智能设备播报、音视频创作等多种场景。为了高效稳定地调用服务,文章详细讲解了WebSocket连接复用、连接池和对象池等优化技术,并通过对比实验展示了优化效果。优化后,机器负载降低,任务耗时减少,网络负载更优。同时,文章还提供了异常处理方法及常见问题解决方案,帮助开发者更好地集成和使用SDK。
[langchaingo] 智谱GLM-4在线模型体验
本文介绍如何使用Go语言版的Langchain框架——langchaingo,结合清华大学KEG实验室开发的GLM-4模型,在本地运行AI项目。GLM-4是一个先进的自然语言处理模型,支持多种任务。通过智谱AI开放平台注册可获1000w token用于测试。文章展示了langchaingo的基本配置、构建聊天内容及生成回复的过程,并简要总结了项目的现状和未来更新计划。
神经codec模型相关论文
本文汇总了近年来在神经音频编解码器和语音语言模型领域的多项重要研究,涵盖从2020年到2024年的最新进展。这些研究包括端到端的音频编解码器、高效音频生成、高保真音频压缩、多模态表示学习等。每项研究都提供了详细的论文链接、代码和演示页面,方便读者深入了解和实验。例如,SoundStream(2021)提出了一种端到端的神经音频编解码器,而AudioLM(2022)则通过语言建模方法生成音频。此外,还有多个项目如InstructTTS、AudioDec、HiFi-Codec等,分别在表达性TTS、开源高保真音频编解码器和高保真音频压缩方面取得了显著成果。
Qwen-Agent功能调用实践探索
本文详细解析了Qwen-Agent的核心功能——功能调用,涵盖其定义、工作流程、重要性和实际应用,通过实例展示了如何在Qwen-Agent中利用此功能与外部工具和API互动,扩展AI应用范围。
用百炼做一个2024云栖大会问答助手
自2017年起,每年持续关注云栖大会,去年开始全程观看在线回放,并使用通义千问进行语音转写,形成多份文字稿。这些资料上传至百炼平台,构建知识库,创建问答助手,展示了AI在处理和解析大量信息方面的强大能力。
QWEN-VL Plus 使用小记
近期尝试使用Qwen VL Plus模型处理图像识别任务,以GIS专业背景选择了一张街景图片进行测试。体验上,API调用流畅,环境配置简单,且成本低廉,免费额度可支持约1,000张图片的处理。不过,模型在某些情况下会产生幻觉,如对仅含Google水印的街景图片错误地描述存在地名信息。此外,其文本描述风格多变,从轻松愉快到沉稳不一,有时甚至会拒绝回答。
百炼+魔笔,极速开发端到端的大模型应用
随着大模型技术的不断进步,应用创新呈现出蓬勃发展的势头。开发者在基于百炼完成智能体开发后往往还需要解决应用正式生产上线相关的一系列工程性问题,本文介绍如何通过百炼 + 多端低代码开发平台魔笔的云产品组合的方式快速构建一个端到端的大模型应用,为AI创新加码提速。
如何构建一套qwen-max智能体拥有媲美通义千问在线接口的能力
基于Qwen-Max构建的智能系统,融合了自然语言处理、决策引擎、任务识别与工具选择等技术,具备强大的多模态理解和生成能力。该系统能自动分析用户输入,识别任务类型,选择最优工具执行任务,并整合结果反馈给用户,广泛应用于查询、生成、翻译和图像处理等多个领域,显著提升了任务处理效率和智能化水平。
如何构建一套qwen-max智能体拥有媲美通义千问在线接口的能力
智能系统通过任务识别、决策引擎、工具选择和结果整合,自动选择合适的工具和方法,高效处理查询、生成、翻译、图像处理等任务,提供精准的解决方案。系统支持自然语言理解、任务分类、语义解析与意图识别,确保任务的准确执行和反馈。
探索RAG应用:文档智能与百炼平台的最佳实践(完整代码示例)
方华在阿里云开发者社区发现了一个构建RAG应用的活动,通过官方教程和阿里云提供的工具,如ROS、百炼平台及文档智能,实现了零代码配置RAG应用的Demo。本文分享了该项目的源码本地部署调试方法,介绍了其基于Python的Web应用程序结构,使用FastAPI和Jinja模板引擎,支持文件上传、自定义问答等功能。项目还详细描述了环境配置、服务启动等步骤,帮助开发者更好地理解和实践应用开发。
顶顶通电话机器人开发接口对接大语言模型之实时流TTS对接介绍
大语言模型通常流式返回文字,若一次性TTS会导致严重延迟。通过标点断句或流TTS可实现低延迟的文本到语音转换。本文介绍了电话机器人接口适配流TTS的原理及技术点,包括FreeSWITCH通过WebSocket流TTS放音,以及推流协议和旁路流对接的详细说明。
基于百炼平台qwen-max的api 打造一套 检索增强 图谱增强 基于指令的智能工具调用决策 智能体
基于百炼平台的 `qwen-max` API,设计了一套融合检索增强、图谱增强及指令驱动的智能工具调用决策系统。该系统通过解析用户指令,智能选择调用检索、图谱推理或模型生成等工具,以提高问题回答的准确性和丰富性。系统设计包括指令解析、工具调用决策、检索增强、图谱增强等模块,旨在通过多种技术手段综合提升智能体的能力。
基于百炼平台qwen-max的api 打造一套 检索增强 图谱增强 智能工具调用决策的智能体
本文介绍了一种基于阿里云百炼平台的`qwen-max` API构建的智能体方案,该方案集成了检索增强、图谱增强及智能工具调用决策三大模块,旨在通过结合外部数据源、知识图谱和自动化决策提高智能回答的准确性和丰富度。通过具体代码示例展示了如何实现这些功能,最终形成一个能灵活应对多种查询需求的智能系统。
百炼-千问模型通过openai接口构建assistant 等 go语言
由于阿里百炼平台通义千问大模型没有完善的go语言兼容openapi示例,并且官方答复assistant是不兼容openapi sdk的。 实际使用中发现是能够支持的,所以自己写了一个demo test示例,给大家做一个参考。
本地数据调用析言的解决方案
本文介绍了通过API创建虚拟数据库,利用阿里云百炼/析言GBI平台实现数据查询、分析及可视化的方法。方案结合本地与云端资源,确保数据安全,同时提供灵活的API调用方式,支持按需调用析言的各项功能,有效降低已有本地数据库系统的迁移成本,提升数据分析效率。
阿里云百炼|析言GBI:产品博士的智能分析利器
本文介绍了阿里云“云知道”平台的云指针频道如何利用大模型实现从自然语言到SQL的转换,从而快速提供数据分析服务。通过阿里云AnalyticDB PostgreSQL版数据库存储数据,并结合析言GBI产品能力,实现了高效的数据查询与可视化展示。
基于 Qwen Max 底座打造的图谱增强文本生成式任务系统
基于Qwen Max打造的图谱增强文本生成系统,结合知识图谱与生成式AI,具备精准高效的文字生成能力。系统支持文档解析、知识图谱构建、社区检测、复杂关系建模、语义检索、Prompt调优、分布式任务管理等核心功能,广泛适用于多轮对话、摘要生成、文档翻译等任务,满足大规模、高并发的生产需求。
基于qwen max 的知识图谱 指令对比分析 结构 指令 领域 指令差异分析
感谢阿里开发者社区通义千问Qwen技术应用实践征文活动赠予的Qwen Max Token。本文介绍了三种知识图谱抽取模式:只给结构、给结构和领域引导、给结构、领域引导和领域few-shot样本。通过对比“只给结构”和“给结构和领域引导”两种方法,分析了它们在准确性、推理能力、数据覆盖范围和构建成本等方面的优劣。结果显示,领域引导显著提升了知识图谱的准确性和推理能力,但构建成本较高;而只给结构的方法适用于大规模通用文本的快速抽取,但精度较低。选择合适的方法应根据具体应用需求。
AppFlow:支持飞书机器人调用百炼应用
本文介绍了如何创建并配置飞书应用及机器人,包括登录飞书开发者后台创建应用、添加应用能力和API权限,以及通过AppFlow连接流集成阿里云百炼服务,最后详细说明了如何将机器人添加到飞书群组中实现互动。
AppFlow全面支持Qwen2.5开源版无代码调用
Qwen2.5是阿里云推出的大型语言模型,无需编码即可快速体验。该模型基于最新大规模数据集训练,支持超29种语言,显著提升了知识量、编码及数学能力,特别是在指令遵循、长文本生成、结构化数据理解和生成等方面。通过AppFlow,Qwen2.5可轻松集成至钉钉机器人等应用,实现智能化交互。
【AI问爱答-双十一返场周直播】AI产品专家直播解读重点AI应用场景怎么用?
阿里云【AI问爱答】栏目强势回归,11月25日至28日每晚19:00,连续四天直播,涵盖AI营销、企业办公、社交娱乐及大模型推理调优四大主题,助您深入了解AI应用,解决实际问题。欢迎预约观看!
XiYan-SQL:一种多生成器集成的Text-to-SQL框架
XiYan-SQL 是一种创新的多生成器集成Text-to-SQL框架,通过M-Schema增强模型对数据库结构的理解,结合ICL与SFT方法提升SQL生成质量和多样性,经实验证明在多个数据集上表现优异,特别是在Spider和SQL-Eval上取得了领先成绩。
基于百炼 qwen plus 、开源qwen2.5 7B Instruct 建非schema限定的图谱 用于agent tool的图谱形式结构化 文本资料方案
基于百炼 qwen plus 的上市企业ESG图谱构建工作,通过调用阿里云的 OpenAI 服务,从 Excel 文件读取上市公司 ESG 报告数据,逐条处理并生成知识图谱,最终以 YAML 格式输出。该过程包括数据读取、API 调用、结果处理和文件保存等步骤,确保生成的知识图谱全面、动态且结构清晰。此外,还提供了基于 Pyvis 的可视化工具,将生成的图谱以交互式图形展示,便于进一步分析和应用。
基于openi平台免费华为昇腾910B芯片部署qwen2.5 Instruct 14B大模型
基于OpenI平台和华为昇腾910B芯片,本方案详细介绍了如何免费部署Qwen-2.5 Instruct 14B大模型。涵盖准备工作、模型适配、部署步骤及性能优化等内容,适用于NLP任务部署、本地化适配及实时服务化等多种应用场景。
数据魔力,一触即发 —— Dataphin数据服务API,百炼插件新星降临!
本文通过一个利用百炼大模型平台和Dataphin数据服务API构建一个客户360智能应用的案例,介绍如何使用Dataphin数据服务API在百炼平台创建一个自定义插件,用于智能应用的开发,提升企业智能化应用水平。
着眼未来,共建多元化的大模型生态
本文介绍了德勤中国如何利用大模型赋能企业,分享了阿里云“产品博士”作为首个内部案例的成功经验,以及阿里云智能集团如何通过“模型+应用”双轮驱动,构建全面开放的大模型生态,帮助企业实现业务价值。
开放应用架构,建设全新可精细化运营的百炼
本文介绍了阿里云智能集团在百炼大模型应用中的技术实践和运营经验。主要内容包括:1) RAG技术的背景及其在落地时面临的挑战;2) 多模态多语言RAG技术的研发与应用;3) 多模态多元embedding和rank模型的训练;4) 基于千问大模型的embedding和rank模型;5) 开源社区推出的GT千问系列模型;6) 模型应用中的可运营实践;7) AI运营的具体方法论和实践经验。通过这些内容,展示了如何解决实际应用中的复杂需求,提升系统的准确性和用户体验。
多端融合,打造最优落地效果的多模态百炼
本次分享由阿里云智能集团飞天实验室资深产品专家江潇和科学家胡露露主讲,介绍了多端融合的多模态百炼产品。内容涵盖多模态模型的优化、生产力和产品力建设、RAG能力升级、终端大模型场景探索、内容安全和生态应用等方面。百炼已支持多模态模型调用,提升了模型效果和应用效果,并在安全性、模型优化和终端部署上取得了显著进展。
阿里云百炼|全妙:全面升级,助力伙伴推动产业落地
本次分享由阿里云智能集团资深产品专家秦璇主讲,主题为大模型在内容创作、数据分析、智能服务领域的应用。内容涵盖大模型市场概况、全妙产品介绍、部分案例及全妙建设重点与功能介绍。全妙产品包括妙策、妙笔、妙搜,旨在通过多模态技术和算法优化,助力企业和政府客户实现高效的内容创作和管理。
Jarvis×百炼,打造大模型智慧出行客服
本次分享由哈啰集团高级算法专家郭佳盛主讲,主题为“Jarvis×百炼,打造大模型智慧出行客服”。内容涵盖AI在智慧出行领域的应用探索、AI加持客服全链路解决方案、哈罗智能客服的大模型应用、大模型在C端与B端的应用探索,以及企业内部大模型构建与运营。通过实例和经验分享,展示了哈啰如何将大模型应用于实际业务,提升用户体验和运营效率。
如何编写有效的Prompt模板:提升大模型性能的关键
在大模型应用中,编写有效的Prompt至关重要。本文介绍了如何编写高质量的Prompt模板,包括明确任务定义、选择高质量示例、优化任务指示和调整示例顺序。详细探讨了百炼平台提供的三种主要Prompt模板(ICIO、CRISPE、RASCEF)及静态和动态样例库的创建与应用,帮助提升模型性能。
基于百炼平台构建智能体应用——十分钟构造能主动提问的导购智能体
本文介绍了如何使用阿里云百炼大模型服务平台构建一个多智能体的智能导购应用,并将其部署到钉钉。通过百炼的Assistant API,您可以快速构建一个包含规划助理、手机导购、冰箱导购和电视导购的智能导购系统。文章详细讲解了从创建函数计算应用、访问网站、验证智能导购效果到将商品检索应用集成到智能导购中的全过程,帮助您快速实现智能导购功能。
如何确定 Broken Pipe 异常是由网络问题还是其他原因引起的
Broken Pipe 异常可能由网络问题或其他原因引起。要确定具体原因,可以检查网络连接状态、防火墙设置和系统日志,同时分析异常发生时的上下文信息。
从零到英雄:利用百炼平台打造高效情感分析智能体的全攻略
百炼平台是阿里巴巴推出的面向开发者的AI模型训练和推理平台,提供丰富工具和服务,支持从需求分析到部署上线的全流程。本文以构建情感分析系统为例,详细介绍如何利用百炼平台完成数据准备、模型选择与训练、评估调优及最终部署。
基于《文档智能 & RAG让AI大模型更懂业务》解决方案实践体验后的想法
通过实践《文档智能 & RAG让AI大模型更懂业务》实验,掌握了构建强大LLM知识库的方法,处理企业级文档问答需求。部署文档和引导充分,但需增加资源选型指导。文档智能与RAG结合提升了文档利用效率,但在答案质量和内容精确度上有提升空间。解决方案适用于法律文档查阅、技术支持等场景,但需加强数据安全和隐私保护。建议增加基于容量需求的资源配置指导。
基于文档智能和百炼平台的RAG应用-部署实践有感
本文对《文档智能 & RAG让AI大模型更懂业务》解决方案进行了详细测评,涵盖实践原理理解、部署体验、LLM知识库优势及改进空间、适用业务场景等方面。测评指出,该方案在提升AI大模型对特定业务领域的理解和应用能力方面表现突出,但需在技术细节描述、知识库维护、多语言支持、性能优化及数据安全等方面进一步完善。