构建AI智能体:五十七、LangGraph + Gradio:构建可视化AI工作流的趣味指南
本文介绍了一个基于LangGraph和Qwen大模型的可视化智能工作流系统,旨在降低AI应用门槛,让非技术用户也能轻松组合各种AI能力。系统通过四层处理引擎(预处理、情感分析、关键词提取、智能回复)自动化处理用户反馈,相比传统人工方式可大幅提升效率和质量。文章详细展示了系统架构设计、代码实现和可视化交互界面,并提供了电商客服场景的应用案例。该系统将复杂的大模型能力封装成模块化工作流,支持实时流程监控和灵活配置,有效解决了传统用户反馈处理中效率低下、标准不一等痛点。
构建AI智能体:五十六、从链到图:LangGraph解析--构建智能AI工作流的艺术工具
本文介绍了LangGraph这一基于LangChain的库,它突破了传统线性链式开发的局限,通过图计算模型实现复杂AI应用的构建。LangGraph的核心优势在于:1)支持动态图结构,实现循环和条件路由;2)内置状态管理,维护应用数据流;3)天然支持多智能体协作。与传统开发方式相比,LangGraph通过节点、边和状态的抽象,提供了更清晰的业务逻辑表达、更健壮的错误处理、更好的可观测性,以及更便捷的团队协作和功能扩展能力。
如何利用 OneKey MCP Router Python SDK构建大模型Function Call多工具调用数据集
OneKey MCP Router SDK 提供统一API密钥与标准化Python接口,简化多MCP服务器集成,支持搜索、地图、支付等工具调用,助力高效构建AI Agent的Function Call数据集。
构建AI智能体:五十五、混合式智能投资顾问:融合快速响应与深度推理的自适应架构
混合式智能投资顾问系统通过情境感知的智能路由机制,在反应式快速响应与深思式深度分析间实现动态平衡。系统根据查询复杂度、用户价值和资源状况,自动选择最优处理通道:简单查询(0.5-2秒)走反应式通道,中等复杂度(2-8秒)采用混合并行处理,复杂问题(8-15秒)进入深思式深度分析。设计创新包括动态负载均衡、渐进式响应和多级缓存体系,既保证响应速度又提供深度价值。该架构通过智能路由层、多通道处理引擎和实时监控系统,实现了计算资源的最优分配,为不同复杂度的投资咨询需求提供个性化解决方案,标志着智能投顾技术进入成熟阶段
SpringAI+DeepSeek大模型应用开发
SpringAI整合主流大模型,支持对话、函数调用与RAG,提供统一API,简化开发。涵盖多模态、流式传输、会话记忆等功能,助力快速构建AI应用。
SpringAI+DeepSeek大模型应用开发
本章介绍AI核心概念与大模型原理。AI历经三阶段发展,Transformer模型推动其飞跃。该模型基于注意力机制,可处理文本、图像、音频等数据,实现智能生成与推理。大语言模型(LLM)如GPT、DeepSeek均基于此,通过持续预测下一个词,逐字生成连贯内容,实现对话、创作等功能。
阿里云百炼是什么?阿里云百炼登录入口及功能说明
阿里云百炼是什么?阿里云百炼是阿里云推出的一站式大模型开发与应用平台,于 2023 年 10 月发布,后续历经多次升级,成为承载阿里云云 + AI 能力的核心平台,面向企业、开发者及 ISV 技术人员,提供从模型调用到应用构建的全链路服务。 阿里云百炼提供两个核心登录入口,分别对应平台介绍与后台管理功能,开发者可通过对应链接访问相关服务,完成大模型体验与 API 调用操作。
SpringAI+DeepSeek大模型应用开发
本教程以SpringAI为核心,讲解Java与大模型(如DeepSeek)融合开发,助力传统项目智能化。介绍AI基础、Transformer原理及SpringAI应用,推动Java在AI时代焕发新生。适合Java程序员入门大模型开发。
构建AI智能体:五十四、智能投资顾问的两种实现:反应式与深思式实践策略对比
反应式与深思熟虑式智能投资顾问架构代表了AI在投资咨询领域应用的两种不同哲学和实践路径。反应式架构以其快速响应、高可扩展性的特点,适合标准化、高并发的咨询场景;而深思熟虑式架构通过深度推理、个性化服务为复杂投资决策提供专业支持。未来智能投顾的发展方向不是二选一,而是通过混合架构实现优势互补。金融机构应根据自身业务特点、客户群体和技术能力,选择合适的架构组合策略。对于追求极致用户体验的机构,可以优先部署反应式架构快速获客;对于服务高净值客户的机构,则应重点建设深思熟虑式架构提供深度服务。
构建AI智能体:五十三、反应式应急+深思式优化:反应速度与规划智慧的平衡
智能体系统设计的混合架构研究 本文探讨了智能体系统的两种基本范式及其融合架构。反应式智能体采用"感知-行动"模式,具有响应速度快、资源消耗低的特点,适用于紧急场景;深思熟虑智能体采用"感知-推理-行动"模式,具备复杂问题求解能力,但计算成本高。研究表明,最先进的解决方案是分层混合架构:底层反应层处理紧急任务,上层深思层负责战略规划,二者通过动态交互机制协作。这种架构在扫地机器人等应用场景中展现出显著优势,既能快速应对突发情况,又能执行长期规划任务。
构建AI智能体:五十二、反应式智能体:AI世界的条件反射,真的可以又快又稳
反应式智能体是一种基于感知-行动模式的智能系统,它不依赖复杂的内部模型,而是通过简单的条件-动作规则对环境做出即时响应。文章通过蜜蜂采蜜、膝跳反射等例子,阐述了反应式智能体的核心思想:快速、直接的刺激-反应机制。重点介绍了罗德尼·布鲁克斯提出的包容架构,该架构通过分层的行为模块和优先级仲裁机制,使简单规则组合产生复杂行为。以扫地机器人为例,展示了反应式设计在实时响应、避障导航等方面的优势,同时也指出了其在复杂规划任务中的局限性。
AI Ping: 一站式大模型服务评测与API调用平台技术解析
在当前大模型应用爆发式增长的背景下,开发者面临着一个共同的痛点:如何高效、低成本地调用大模型服务? 本文将深入解析AI Ping如何通过其vibe coding工具链实现"零成本"接入三大主流免费模型,帮助开发者在日常开发中显著降低AI使用成本。
构建AI智能体:五十一、深思熟虑智能体:从BDI架构到认知推理的完整流程体系
本文系统介绍了深思熟虑智能体(Deliberative Agent)及其核心BDI架构。智能体通过信念(Beliefs)、愿望(Desires)、意图(Intentions)三个核心组件实现复杂决策:信念系统维护环境认知,愿望系统管理目标设定,意图系统执行行动计划。文章详细阐述了智能体的状态管理、推理机制和完整决策流程,并通过一个学术研究助手的设计示例,展示了如何实现从环境感知、计划制定到执行反思的完整认知循环。这种架构使智能体能够进行深度思考、规划和学习,而非简单反应式响应,代表了人工智能从工具性向认知性
构建AI智能体:五十、ModelScope MCP广场 · MCP协议 · Cherry Studio:AI应用生产线
本文介绍了AI开发生态中的三个关键组件:CherryStudio可视化开发平台、ModelScope MCP广场和MCP协议标准。CherryStudio作为低代码AI应用开发环境,通过拖拽式界面简化了基于大语言模型的智能体构建;ModelScope MCP广场作为官方MCPServer分发中心,提供各类工具服务的发现与管理;MCP协议则定义了LLM与外部工具的安全连接标准。三者构建了从资源发现、能力连接到应用落地的完整AI开发链条,推动AI开发从手工作坊迈向工业化时代。文章还演示了如何在CherryStu
云栖实录:重构可观测 - 打造大模型驱动的云监控 2.0 与 AIOps 新范式
大模型时代驱动智能运维变革,阿里云通过统一可观测平台、UModel数字孪生与AIOps Agent,实现数据、认知、决策的全链路升级,重构运维新范式。
阿里云析言XiYan-SQL智能体,登顶BIRD-CRITIC全球榜单!
阿里云飞天实验室自研数据分析智能体“析言 XiYan-SQL”在全球权威SQL诊断基准BIRD-CRITIC(SWE-SQL)多项榜单中排名第一,超越国内外顶尖团队。该模型在真实数据库问题诊断、跨方言鲁棒性、复杂SQL处理及分布外泛化等方面表现卓越,支持MySQL、PostgreSQL等主流数据库。技术上创新采用模式筛选、多生成器集成与候选重组策略,提升SQL生成质量与系统适应性。核心模型已开源至GitHub、ModelScope和Hugging Face,欢迎开发者体验贡献。
构建AI智能体:四十九、MCP 生态的革命:FastMCP 如何重新定义 AI 工具开发
FastMCP是一个基于MCP协议的高性能Python框架,旨在简化AI模型与外部工具的集成开发。它通过装饰器、类型提示等现代Python特性,将MCP协议的标准化要求转化为Pythonic的开发体验。核心功能包括:工具注册(@mcp.tool)、资源管理(@mcp.resource)和提示词模板,支持自动生成JSONSchema、异步任务调度和错误处理。FastMCP通过三层架构(应用层、核心引擎、协议适配层)实现高效开发,典型应用场景如"AI调用计算器工具"只需简单装饰器即可完成工具
在 VSCode 中薅大模型羊毛?我用 Kilo Code + AI Ping 实现大模型智能编程
如今,借助开放的大模型调度平台,普通开发者也能灵活接入高性能大模型。 Kilo Code + 兼容 OpenAI 协议平台的组合,体现了技术民主化的趋势——让创新不再被使用门槛阻挡。
【AI实训营12月重磅焕新】RAG专题课+创客挑战赛双线开启!手把手教你打造“专属阅读搭子”,赢限量行李箱+双重好礼🎁
告别PDF阅读烦恼!首期「企业级文本知识库构建」RAG实战课上线,知名科技博主【AI进化论花生】亲授,手把手教你用阿里云百炼平台打造专属“智能阅读助手”。学课程、补通识、冲榜单,参与即有机会赢神秘礼品及限量高颜值行李箱!立即加入,智胜未来!
构建AI智能体:四十六、Codebuddy MCP 实践:用高德地图搭建旅游攻略系统
本文提出了一种基于MCP协议与高德地图API的智能旅游攻略系统,旨在解决传统旅游信息碎片化、时效性差等问题。系统通过整合多源数据,实现动态路线规划、个性化推荐等功能,支持自然语言交互和多模态展示。技术层面,MCP协议作为核心枢纽,标准化了工具调用和错误处理;高德地图API则提供地理智能、时空分析等能力。系统可生成包含景点、美食、住宿等信息的完整攻略,并支持临时发布共享。实践表明,该系统能有效降低用户规划成本,为旅游行业数字化转型提供参考。
阿里云百炼官网登录入口:前台价格介绍及后台管理控制台链接
阿里云百炼官网登录入口提供AI大模型平台详细介绍及定价说明,开通即享最高7000万免费Tokens。前台了解产品优势,后台获取API-KEY,调用API并查看使用文档,一站式管理大模型应用。
构建AI智能体:四十五、从专用插件到通用协议:MCP如何重新定义AI工具生态
MCP(模型上下文协议)是AI领域的标准化工具调用协议,相当于万能遥控器,让不同AI模型能通过统一接口使用各种外部工具。其核心架构采用客户端-服务器模式:AI客户端负责理解用户意图并整合结果,MCP服务器则专注于工具执行。相比厂商私有的FunctionCall,MCP具有开放标准、跨模型支持、动态发现等优势,能实现真正的"即插即用"。该协议解决了AI模型知识局限、无法执行动作等问题,使AI从"知识库"进化为能操作外部系统的智能助手,可应用于个人
LangChain vs LangGraph:大模型应用开发的双子星框架
LangChain是大模型应用的“乐高积木”,提供标准化组件,助力快速构建简单应用;LangGraph则是“交通控制系统”,通过图结构支持复杂、有状态的工作流。两者互补,构成从原型到生产的一体化解决方案。
AI 十大论文精讲(八):知识蒸馏如何让大模型 “瘦身不减能”
本篇解读DistilBERT,一篇解决大模型落地难题的里程碑论文。面对BERT等大模型参数多、耗能高、部署难的问题,DistilBERT提出预训练阶段知识蒸馏,结合三重损失与轻量化设计,在保留97%性能的同时,模型缩小40%,推理提速60%,推动NLP迈向高效、绿色、边缘化应用。
构建AI智能体:四十四、线性回归遇见大模型:从数学原理到智能实战
本文系统介绍了线性回归的原理、实现和应用。线性回归通过建立自变量(X)与因变量(Y)之间的线性关系(Y=wX+b)进行预测,核心方法包括最小二乘法(精确解析解)和梯度下降法(迭代数值解)。文章结合Python代码示例,演示了从简单线性回归到多元线性回归的实现过程,并分析了大模型时代线性回归的新应用场景。同时指出了线性回归的局限性(如对异常值敏感)和扩展方向(多项式回归、正则化等)。通过Qwen等大模型的辅助,可以快速生成高质量代码并深入分析回归结果,使这一基础方法在复杂数据中发挥更大价值。
构建AI智能体:四十三、智能数据分析机器人:基于Qwen-Agent与Text2SQL的门票分析方案
摘要:本文介绍了一个基于Qwen-Agent和Text2SQL技术的智能门票数据分析系统。该系统通过自然语言交互降低技术门槛,使业务人员可直接查询和分析数据。系统采用分层架构设计,包含用户交互层、智能代理层、工具执行层和数据服务层,核心功能包括自然语言理解、SQL生成、数据查询和可视化展示。文章详细阐述了系统流程、核心代码实现及优化策略,展示了如何通过大语言模型实现企业级数据分析应用的智能化转型,有效解决了传统数据分析流程中响应慢、沟通成本高等痛点。
构建AI智能体:四十二、使用 Qwen-Agent Assistant 调用高德 API 实现天气查询
本文介绍了如何将Qwen-Agent智能助手与高德天气API集成,构建一个能响应自然语言查询的天气服务系统。主要内容包括:高德天气API的注册、参数配置及数据解析方法;Qwen-Agent框架中Assistant类的核心功能和使用方式;通过FunctionCall和Assistant两种实现方式的对比;完整示例展示了从工具定义、API集成到交互界面开发的实现过程。该系统支持终端和Web两种交互模式,可扩展为智能客服、物联网控制等场景,为开发者提供了大模型与实际API服务结合的典型范例。
飞书文档自动更新到百炼知识库
计算巢AppFlow支持定时自动同步飞书文档至百炼知识库,实现RAG检索。通过创建飞书应用、配置权限与凭证,结合AppFlow流程模板,可高效完成知识库自动化更新,大幅降低人工维护成本。
宠物识别算法在AI摄像头的应用实践:从多宠识别到行为分析
基于边缘计算与轻量化AI模型,本方案实现多宠家庭中宠物个体识别、行为分析与健康监测。通过端云协同架构,在本地完成实时识别(延迟<50ms),保障隐私同时支持8只宠物同屏追踪。结合多模态特征与行为模式,准确率超98%,可联动喂食器、猫砂盆等设备,为宠物提供个性化智能照护,适用于家庭、托管中心及医疗场景,推动智能养宠迈向精准化、生态化发展。
构建AI智能体:四十一、大模型思维链提示工程:技术原理与行业应用案例分析
本文介绍了思维链提示技术及其应用。思维链提示是一种引导大模型进行逐步推理的提示工程技术,通过结构化提示模拟人类解决问题的逻辑分析路径,使模型能够显式化中间推理步骤,从而提升推理准确性与可解释性。文章详细阐述了思维链提示的关键特征(步骤可解释性、逻辑链条完整性、问题分解能力)和工作原理,并通过数学推理、逻辑分析和多轮复杂问题三个案例展示了其具体应用流程。该技术在教育辅导、商业决策和科研分析等领域具有重要价值,能够突破传统大模型的黑箱推理瓶颈,提高AI系统的决策透明度和可靠性。
阿里云百炼API-KEY在哪查看?百炼api调用方法整理
阿里云百炼API-KEY在哪查看?本文手把手教你从开通平台到获取API-KEY全过程。登录百炼平台,点击免费体验,同意协议后,在控制台右上角头像处进入API-KEY管理,创建并复制密钥,还可领取最高5000万Tokens免费额度,有效期180天。新手必看!
阿里云百炼API调用教程:准备API-Key、配置环境变量和调用API流程
本文介绍阿里云百炼API调用全流程:注册登录阿里云账号,开通百炼服务,创建并配置API Key至环境变量,避免硬编码风险。支持通过Python的OpenAI兼容接口或DashScope SDK调用大模型,亦可在Node.js、Java等环境中使用。附详细命令与代码示例,助您快速上手百炼AI大模型平台。
阿里云百炼官网:开通百炼AI大模型平台,免费领取7000万Tokens免费额度
阿里云百炼官网提供AI大模型平台详细介绍及API调用入口,新用户可免费领取最高7000万Tokens额度,涵盖多个模型。通过首页了解功能与定价,开通服务后进入管理控制台获取API-KEY,便捷调用大模型能力,助力开发者快速集成AI应用。
阿里云百炼官网登录入口:首页和后台API管理调用控制台
阿里云百炼官网提供两大入口:一是平台介绍页,详述大模型能力、优势及定价,可免费领取最高5000万Tokens;二是管理控制台,用于获取API-KEY、调用API及查阅文档。开发者可通过对应链接快速开通服务并接入使用。
阿里云百炼支持哪些AI大模型?文本生成、图像生成、语音合成及视频编辑等模型整理
阿里云百炼支持通义千问、通义万相等自研模型及DeepSeek、Kimi、Llama等第三方大模型,覆盖文本生成、图像生成、语音合成、视频生成、向量计算等多类AI能力,助力开发者高效构建应用。新用户可免费领取最高5000万Tokens。
构建AI智能体:四十、K-Means++与RAG的融合创新:智能聚类与检索增强生成的深度应用
KMeans++算法优化RAG系统性能研究 本文探讨了KMeans++算法与检索增强生成(RAG)系统的融合应用。研究针对传统RAG系统在大规模知识库处理中的效率瓶颈,提出采用KMeans++聚类算法构建先聚类后检索的二级优化架构。通过改进初始中心点选择策略,KMeans++显著提升了文本聚类的稳定性和质量,将高维文本嵌入按语义相似性划分为独立分区。实验证明,该方法有效解决了全局检索噪声干扰、高维嵌入存储压力等问题,同时通过Python可视化演示了算法动态运行过程。
阿里云百炼产品月刊【2025年11月】
通义千问本月重磅升级:上线10款多模态与语音模型,涵盖ASR、TTS、视觉语言及翻译;MCP市场新增3个云服务,上架24个电商应用模板;推出实训Agent创客活动,助力高效生成电商视觉内容。
构建AI智能体:三十九、中文新闻智能分类:K-Means聚类与Qwen主题生成的融合应用
K-Means作为最经典和广泛使用的聚类算法,以其简单性和效率在数据科学中占据重要地位。尽管有其局限性,但通过合理的初始化方法、参数调优和与大模型的结合,K-Means仍然能够解决许多实际聚类问题。与大型语言模型的结合代表了现代AI应用的一个重要方向,其中K-Means负责高效处理和大规模模式识别,而大模型负责深度的语义理解和内容生成,二者优势互补,构建出更加智能和高效的AI系统。
构建AI智能体:三十八、告别“冷启动”:看大模型如何解决推荐系统的世纪难题
协同过滤是推荐系统中广泛使用的技术,其核心思想是利用用户行为数据发现相似用户或物品进行推荐。摘要包括:1)协同过滤基于用户历史行为数据,通过计算相似度(如余弦相似度、皮尔逊相关系数)预测用户偏好;2)主要分为基于用户(寻找相似用户群体)和基于物品(发现相似物品)两种方法;3)面临冷启动、数据稀疏性等挑战,可通过混合推荐(结合内容特征)和矩阵分解等技术解决;4)典型应用包括电商猜你喜欢和流媒体推荐;5)结合大语言模型可增强语义理解能力,提升推荐准确性。
构建AI智能体:三十七、从非结构化文本到结构化知识:基于AI的医疗知识图谱构建与探索
知识图谱是一种用图结构表示实体及其关系的技术,通过三元组(主体-关系-客体)构建语义网络。文章以医疗领域为例,详细介绍了知识图谱的构建流程:数据预处理、实体识别、关系抽取、知识融合、存储与可视化等步骤。知识图谱可应用于智能问答、辅助诊断、药物研发等场景,其结构化特性可弥补大语言模型的不足,二者结合能提升AI系统的准确性和可解释性。文章还展示了基于大模型的医疗知识图谱构建代码示例,涵盖实体识别、关系抽取、图谱存储和智能问答等核心功能,体现了知识图谱在专业领域的实用价值。
智能宠物设备端侧AI技术深度解析:从模型压缩到实时响应
随着宠物经济兴起,智能设备迎来发展机遇。本文聚焦端侧AI在宠物识别中的应用,探讨模型压缩、硬件适配与性能优化技术,解决识别不准、响应慢等痛点,助力开发者打造高效、低功耗的智能宠物产品,实现毫秒级精准识别。
五步教你如何在购买域名后,访问自己的域名——个人建站备案部署解析证书环节
手把手教你完成域名备案、服务器部署、解析与SSL证书配置。从购买域名、ICP备案(7-9天),到云服务器设置、DNS解析,再到Nginx配置与404问题解决,最后申请并部署SSL证书,实现HTTPS访问。图文详解,小白也能轻松搭建个人网站。
构建AI智能体:三十六、决策树的核心机制(二):抽丝剥茧简化专业术语推理最佳分裂点
本文深入探讨了决策树的核心机制,重点分析了最佳分裂点的确定方法。通过鸢尾花分类案例,详细解析了基尼不纯度、加权平均基尼不纯度和信息增益等关键指标的计算过程。文章展示了决策树如何通过穷举搜索找到能最大程度降低不纯度的特征阈值(如花瓣宽度1.65cm),并解释了不同随机种子对分裂点选择的影响。决策树通过一系列if-else问题构建分类模型,其核心是追求节点纯度最大化,采用贪婪算法在每个节点选择信息增益最大的分裂方案。这种机制使决策树既直观又强大,但也需要注意过拟合问题。
构建AI智能体:三十四、LangChain SQLDatabaseToolkit终极指南:架构、优势与最佳实践
SQLDatabaseToolkit 是 LangChain 框架中的一个核心组件,它不属于一个独立的软件,而是一个工具箱或工具集。它的核心目的是为大语言模型提供与 SQL 数据库进行交互的能力,将大模型的自然语言理解能力与数据库的精准数据存储和检索能力结合起来。它极大地降低了通过自然语言访问和操作 SQL 数据库的门槛,是构建基于 LLM 的数据驱动应用的关键组件之一。
网络基础知识随记:TCP/IP 网络模型—从分层逻辑到核心知识点
本文系统梳理TCP/IP网络模型的分层架构与核心原理,涵盖应用层、传输层、网络层及网络接口层的关键协议与概念,如HTTP、TCP/UDP、IP、MAC、ARP等,解析数据封装、解封装过程及各层协作机制,帮助读者建立清晰的网络通信认知体系,掌握跨设备通信的底层逻辑。
解决mac电脑brew update很慢的问题
Homebrew 大部分都是 API 优先模式,切换国内源需配置 API 镜像而非仅修改 git 仓库。核心是设置 `HOMEBREW_API_DOMAIN` 指向国内镜像(如清华源),并更新 brew 主仓库地址,最后执行 `brew update` 生效。旧方法已不适用新版本。