AI实训营上新|电商人必学-保姆级商品视频生成教学
阿里云AI实训营11月推出「Wan2.5电商人爆款打造攻略」,教你用通义万相Wan2.5在百炼平台生成商品图、视频与设计。B站UP主小宇Boi亲授视频生成技巧,支持一键批量制作高质感电商内容,提升转化率。11.12已开课,扫码即学!
构建AI智能体:三十、精雕细琢:驾驭关键词的细微差别,解锁高质量提示词编排与视觉表征
《AI图像生成中的提示词工程艺术》摘要:文章系统阐述了人工智能图像生成中的提示词工程(Prompt Engineering)技术。通过具体案例对比,展示了细微的提示词差异如何导致图像质量的巨大分野,详细解析了提示词的核心要素、语法结构及编排方法。文章提出专业级提示词的多维描述矩阵和权重控制语法,强调精准描述与AI沟通的重要性。同时指出,提示词工程是艺术与科学的结合,需要不断练习和实验才能掌握这项数字时代的关键创造力技能。
构建AI智能体:二十九、Text2SQL:告别繁琐SQL!用大模型自助生成数据报表
Text2SQL技术通过自然语言处理将用户查询转换为SQL语句,解决企业数据查询效率低下的痛点。该技术包含语义理解、模式对齐、SQL生成和优化等核心处理过程,核心组件包括自然语言理解模块、Schema管理模块和SQL生成模块。文章介绍了闭源和开源模型的选择策略,并提供了基于Function Calling的Text2SQL实现示例,展示如何安全高效地将自然语言转换为数据库查询。
AI实训营「电商人爆款打造攻略」第二期课程上新!
连续三期Agent创客分享,教你用阿里云百炼基于Wan2.5-Preview实现AI生成商品图、视频及服饰设计。第二课聚焦电商OOTD穿搭,AI博主「来真的」带你拆解营销设计流程,零基础也能快速上手AI视觉创作,一键体验模板,高效打造电商品牌内容。
JDK 21 字符串拼接最佳实践:场景化选择最优方案
JDK 21 字符串拼接需按场景选择最优方案:静态拼接用`+`,编译器自动优化;单线程动态拼接优选`StringBuilder`;格式化模板结合`formatted()`与文本块,提升可读性;集合拼接用`String.join()`或Stream;多线程场景选`StringBuffer`保障安全。
Redisson 分布式锁深度解析:API 使用与底层源码探秘
本文深入解析Redisson分布式锁的使用与源码实现,涵盖可重入锁、公平锁、读写锁、红锁等核心API的应用场景与配置方法,并通过Lua脚本、Hash结构和看门狗机制剖析其原子性、重入性与自动续期原理,助力开发者高效安全地实现分布式并发控制。
阿里云百炼 UI 设计器:让 AI 对话秒变可交互界面
阿里云百炼 UI 设计器的使命,是以低门槛、高效率的方式,让开发者与非技术人员也能在极短时间内,完成专业级 AI 应用的构建、发布与运行,从而加速 AI 技术的业务落地与价值兑现。未来,UI 设计器将持续围绕能搭、搭好、好搭三大方向打磨能力。
基于弱监督学习的宠物视频内容自动标注技术实践
针对宠物短视频标签混乱问题,提出基于弱监督学习的自动标注方案,融合多模态特征与标签传播算法,实现高效精准的内容识别。相比传统方法,准确率提升至85%,效率提高15倍,成本降低60%,助力平台智能化运营。
构建AI智能体:二十八、大语言模型BERT:原理、应用结合日常场景实践全面解析
BERT是谷歌2018年推出的革命性自然语言处理模型,采用Transformer编码器架构和预训练-微调范式。其核心创新在于双向上下文理解和掩码语言建模,能有效处理一词多义和复杂语义关系。BERT通过多层自注意力机制构建深度表示,输入融合词嵌入、位置嵌入和段落嵌入,输出包含丰富上下文信息的向量。主要应用包括文本分类、命名实体识别、问答系统等,在搜索优化、智能客服、内容推荐等领域发挥重要作用。
从 Transform 到 Transformer,用 EventBridge 与百炼构建实时智能的 ETL 数据管道
作为数据处理领域的经典模式,ETL(Extract-Transform-Load)通过提取、转换、加载三个步骤,高效地处理着各类结构化数据。然而,面对 AI 时代海量、异构、实时的“数据洪流”,传统 ETL 链路,尤其是其核心的转换(Transform)环节,正面临严峻挑战。本文将从一个初级开发者也能理解和上手的视角,探讨 AI 时代的数据处理新范式:如何利用基于 Transformer 架构的大语言模型(LLM)重塑传统数据处理中的转换(Transform)环节,并结合事件驱动架构(Event-Driven Architecture, EDA),为 AI 数据处理链路“注入实时智能”。
AI战略丨阿里云百炼,让企业应用大模型更简单
企业级的大模型开发,是一个复杂的过程,阿里云百炼平台以更经济高效的模型推理服务和更智能灵活的模型定制能力,让更多的企业以更低的门槛、更好的效果使用大模型产品赋能业务。
构建AI智能体:二十七、大模型如何“考出好成绩”:详解内在评测与外在评测方法
本文系统介绍了语言模型评测的两种主要方法:内在评测和外在评测。内在评测聚焦模型基础语言能力,核心指标困惑度(PPL)反映模型预测准确性,计算过程包括条件概率、对数概率和及指数转换。外在评测通过具体任务表现评估模型实用性,采用多层级评估策略(精确匹配、变体匹配、关键词分析和语义评估)。文章详细阐述了评测流程、指标计算方法和代码实现,强调两者结合使用的重要性:内在评测看基本功,外在评测检验实战能力。评测应持续进行,为模型选型、优化部署提供客观依据,同时关注公平性和领域适应性。
阿里云百炼,带你搭建外贸图片翻译助手智能体 从阿里云OpenAPI导入机器翻译API,实现OpenAPI自定义MCP
阿里云提供一站式内容本地化解决方案,涵盖图文视频多模态翻译。通过机器翻译、图片诊断、标题优化等API,助力跨境电商高效实现商品信息多语言智能转换与优化,降低人工成本,提升出海效率。
构建AI智能体:二十六、语言模型的“解码策略”:一文读懂AI文本生成的采样方法
本文探讨了AI文本生成中的采样方法,这些方法决定了AI如何选择候选词来生成文本。文章介绍了两种主要方法:确定性方法(贪心算法和束搜索)和随机采样方法(基础随机采样、温度采样、Top-k采样和Top-p采样)。贪心算法每次选择概率最高的词,生成结果可靠但缺乏创意;束搜索保留多条候选路径,适合需要准确性的任务。随机采样方法则通过引入随机性增加多样性,其中温度采样通过调整温度参数控制创意的随机程度,Top-p采样则动态选择候选词集合,是目前创造性任务的首选方法。
构建AI智能体:二十四、RAG的高效召回方法论:提升RAG系统召回率的三大策略实践
本文探讨了检索增强生成(RAG)系统中的高效召回技术。RAG系统通过检索相关文档增强大语言模型的回答质量,但性能受制于垃圾进,垃圾出原则。为提高召回效果,文章重点分析了三种方法:Small-to-Big通过大小文本块映射兼顾检索精度与上下文丰富度;索引扩展(如HyDE)利用大模型生成假设文档来优化检索;双向改写弥合用户查询与文档表述的差异。这些方法从不同角度解决了RAG系统中的语义鸿沟、词汇不匹配等核心问题,可单独或组合使用。高效召回技术能显著提升RAG系统的回答质量和效率。
构建AI智能体:二十三、RAG超越语义搜索:如何用Rerank模型实现检索精度的大幅提升
本文介绍了重排序(Rerank)技术在检索增强生成(RAG)系统中的应用。Rerank作为初始检索和最终生成之间的关键环节,通过交叉编码器对初步检索结果进行精细化排序,筛选出最相关的少量文档提供给大语言模型。相比Embedding模型,Rerank能更精准理解查询-文档的语义关系,显著提高答案质量,降低Token消耗。文章详细比较了BGE-Rerank和CohereRerank等主流模型,并通过代码示例展示了Rerank在解决歧义查询(如区分苹果公司和水果)上的优势。
构建AI智能体:二十二、双剑合璧:Qwen系列双模型在文生文、文生图中的搭配应用
使用Gradio构建的一个演示界面,该界面将展示如何使用Qwen-Turbo生成提示词,然后使用Qwen-Image生成图像。 我们将按照之前的设计,将流程分为两个主要步骤:先生成提示词,然后生成图像。在提示词生成成功之前,直接生成图像将会给出提示先生成提示词。
构建AI智能体:二十一、精准检索“翻译官”:qwen-turbo在RAG Query改写中的最佳实践
因为用户的自然提问方式与知识库的客观组织方式天生存在不可调和的差异。如果不进行改写,直接将原始查询用于检索,就如同让一个不懂检索的人自己去漫无目的地查字典,结果往往是找不到、找错了或找到的没法用。Query 改写是保障 RAG 系统可靠性、准确性和可用性的“第一道防线”和“核心基础设施”。它通过一系列技术手段,将用户的意图“翻译”成检索器能高效理解的语言,从而确保后续步骤能在一个高质量的基础上进行。
AI实训营11月重磅上新!电商卖家福音来咯:一键生成高颜值商品视频,还能赢好礼!
AI实训营11月重磅活动来袭!专为电商卖家打造,输入商品信息即可一键生成专业级短视频,支持服饰、数码、家居等多品类。零门槛、高效智能,基于阿里云百炼+Wan2.5模型,画质清晰、风格多样。参与即有机会赢取定制周边好礼及Tokens优惠包,提升创作效率,引爆流量增长!
构建AI智能体:二十、妙笔生花:Gradio集成DashScope Qwen-Image模型实现文生图
本文介绍了一个基于Gradio和阿里云通义千问Qwen-Image模型的文生图应用。该应用通过简洁的Web界面实现文本生成图像功能,支持多种风格(3D卡通、动漫、油画等)和尺寸选择,并包含负面提示词功能。文章详细解析了代码结构,包括API调用封装、参数映射、错误处理等核心功能模块,同时提供了丰富的示例提示词和生成效果展示。该工具适合探索AI图像生成能力,通过调整提示词和参数可优化生成效果。
一文带你读懂“医保智慧经办智能体”
医保智慧经办智能体融合AI、大数据与云计算,构建五层技术架构,实现智能咨询、审核、监管与决策支持,推动医保服务从“人找服务”向“服务找人”转变,提升效率、精准防控风险,助力医保治理现代化。
算法备案:AI产品能上架平台,就代表合规?看看你接的厂商是怎么说的(附用户协议)
DeepSeek深度求索API协议: “您应按照《生成式人工智能服务管理暂行办法》等法律法规要求,作为生成式人工智能服务提供者,承担在提供生成式人工智能服务中的相应法律责任,并依法开展安全评估、算法备案等合规程序。”
构建AI智能体:十九、优化 RAG 检索精度:深入解析 RAG 中的五种高级切片策略
本文详细介绍了RAG(检索增强生成)系统中的文本切片策略。RAG切片是将长文档分割为语义完整的小块,以便AI模型高效检索和使用知识。文章分析了五种切片方法:改进固定长度切片(平衡效率与语义)、语义切片(基于嵌入相似度)、LLM语义切片(利用大模型智能分割)、层次切片(多粒度结构)和滑动窗口切片(高重叠上下文)。作者建议根据文档类型和需求选择策略,如通用文档用固定切片,长文档用层次切片,高精度场景用语义切片。切片质量直接影响RAG系统的检索效果和生成答案的准确性。
ChatPPT+魔搭社区:MCP 2.0全面升级!
ChatPPT MCP2.0正式发布,联合魔搭ModelScope推出云端智能体服务,支持生成、编辑、演讲、动画等全链路功能,开放Streamable HTTP协议与本地Stdio双模式,已接入20+平台,服务300+开发者。
构建AI智能体:十八、解密LangChain中的RAG架构:让AI模型突破局限学会“翻书”答题
本文深入探讨了如何利用LangChain框架实现RAG(检索增强生成)架构,构建智能问答系统。文章首先介绍了RAG技术解决大模型知识更新和准确性问题的原理,以及LangChain作为开发框架提供的模块化组件。详细解析了LangChain的核心模块(模型、提示、索引、链等)和四种ChainType(stuff、map_reduce、refine、map_rerank)的特点与适用场景。通过一个完整的代码示例,展示了如何结合DeepSeek模型和FAISS向量数据库处理PDF文档,实现本地知识库问答功能
构建AI智能体:十七、大模型的幻觉难题:RAG 解决AI才华横溢却胡言乱语的弊病
RAG(检索增强生成)是一种结合信息检索与大型语言模型的技术,旨在解决LLM的幻觉问题。其核心流程包括:离线处理阶段(知识库构建)和在线处理阶段(用户查询应答)。通过将外部知识源转换为向量存入数据库,当用户提问时,系统会检索相关内容并增强提示,再由LLM生成准确答案。RAG技术显著提升了AI在专业领域的可靠性,适用于智能客服、企业知识管理、内容创作等场景。尽管面临检索精度、多模态处理等挑战,RAG仍是AI实用化的重要突破方向。
构建AI智能体:十六、构建本地化AI应用:基于ModelScope与向量数据库的文本向量化
本文介绍了如何利用本地化部署的轻量级文本嵌入模型实现语义搜索。重点讲解了两种高效模型paraphrase-MiniLM-L6-v2和all-MiniLM-L6-v2的特点,它们通过知识蒸馏技术实现高质量语义表示,且体积小、速度快。文章详细演示了从ModelScope下载模型到本地、使用sentence-transformers库生成文本向量、构建FAISS索引进行相似性搜索的完整流程。通过Python代码示例展示了如何实现文档添加、查询处理和索引持久化功能,为构建本地化的语义搜索系统提供了实用解决方案。
深入理解 Java 类加载器:双亲委派机制的前世今生与源码解析
本文深入解析Java类加载器与双亲委派机制,从Bootstrap到自定义加载器,剖析loadClass源码,揭示类加载的线程安全、缓存机制与委派逻辑,并探讨SPI、Tomcat、OSGi等场景下打破双亲委派的原理与实践价值。(238字)
AI如何解决城市禁养犬巡查难题:快瞳智能识别算法实战解析
传统人工巡查城市禁养犬存在效率低、漏检率高难题。快瞳科技通过禁养烈性犬识别与遛狗不牵绳检测算法,结合边缘计算部署,实现了对不文明养犬行为的实时发现、取证与预警。该技术将识别准确率提升至98%以上,使管理模式从被动处置转向主动发现,为构建文明养犬环境提供了高效的AI解决方案。
构建AI智能体:十五、超越关键词搜索:向量数据库如何解锁语义理解新纪元
向量数据库是专为存储和检索高维向量设计的新型数据库,通过Embedding技术将文本、图像等非结构化数据转化为向量,利用近似最近邻(ANN)算法实现语义级相似性搜索,广泛应用于AI推荐、语义搜索与智能问答,是大模型时代的关键基础设施。
构建AI智能体:十四、从“计算”到“洞察”:AI大模型如何让时间序列数据“开口说话”
时间序列模型是分析和预测时序数据的核心工具,广泛应用于销量预测、趋势分析和异常检测。本文深入浅出地讲解其基本概念、组成成分(趋势、季节性、残差)、平稳性处理及主流模型如Holt-Winters和ARIMA,并结合代码实例展示建模全过程,帮助读者掌握从数据预处理到预测可视化的关键技能,实现数据驱动的科学决策。
阿里云百炼产品月报【2025年10月】
本月重点:通义千问发布9款Qwen3-VL多模态新模型,覆盖32B至8B多种尺寸,支持思考模式、超长视频理解及2D/3D定位,并推出统一多模态向量与高精度语音识别模型。MCP生态新增17个云服务,电商AI应用模板上线,支持一键生成商品图与宠物店数字人视频,助力高效内容创作。
🔥【限时福利】手慢无!阿里云百炼 × 电商卖家专属福利来啦!🔥
双11备战利器!一键生成AI电商Agent,3分钟打造吸睛主图与短视频,提升转化率。参与即有机会赢限量搪瓷杯、笔记本好礼,更有20元千万Tokens优惠包助力创作,奖品仅剩60+份,速来抢占流量先机!
构建AI智能体:十三、大数据下的“搭积木”:N-Gram 如何实现更智能的语义搜索
N-gram是一种基于上下文的统计语言模型,通过前N-1个词预测当前词的概率,广泛应用于文本生成、输入法预测、语音识别等领域,具有简单高效、可解释性强的优点,是自然语言处理的基础技术之一。
中小电商卖家福音!用AI 3分钟搞定高转化主图+详情页!
还在为电商设计成本高、效率低发愁?阿里云百炼全新推出「一键生成电商组图」功能,AI智能生成主图、详情页等视觉素材,零设计基础也能快速出图!限时参与活动,赢定制好礼,更有超值Tokens优惠包,助力爆款打造!
阿里云百炼产品月报【2025年10月】
通义千问本月重磅升级:发布9款Qwen3-VL多模态模型,支持视频理解、2D/3D定位;MCP生态新增17项服务;推出电商AI生图模板,助力商家降本增效。
构建AI智能体:十、开箱即见 Gradio:大模型的“魔法画布”,让每一个想法清晰可见
Gradio是一个快速构建机器学习演示界面的Python库,能够将需要数天开发工作的模型展示缩短为几分钟的脚本编写。它通过简单的Python代码即可生成完整的Web应用界面,支持文本、图像、音频等多种交互组件,适用于模型展示、教学演示和原型测试等场景。文章详细介绍了Gradio的核心功能、基础语法和组件使用方法,并通过情感分析和聊天机器人两个实际案例展示了如何快速部署AI模型交互界面。Gradio大幅降低了将模型转化为可交互应用的门槛,使开发者能更专注于模型本身而非界面开发。
抖音怎么发教学智能体的视频?阿里云百炼实战指南,智能体来了教你落地
2025年,AI智能体教学成抖音新风口。本文详解如何借助阿里云百炼平台,从搭建教学智能体、生成合规视频到SEO优化,全流程打造高搜索量教学内容,助力开发者实现技术变现与品牌曝光,抢占AI传播先机。(238字)
构建AI智能体:八、AI新纪元:ModelScope魔法 — 本地搭建超酷的图片处理模型
ModelScope是由阿里巴巴达摩院推出的AI模型托管与服务平台,被称作AI模型的Github。它汇集了自然语言处理、计算机视觉、语音识别等领域的数千个高质量预训练模型,大幅降低了AI应用开发门槛。平台提供简化的Pipeline API,只需几行代码即可调用模型,并支持模型微调。与通义千问等单一AI产品不同,ModelScope是一个开放的模型生态系统,覆盖更广泛的应用场景。通过实际案例展示了其在人像卡通化、抠图、天空替换等方面的应用效果。
Java 设计模式之迭代器模式:优雅遍历集合元素
迭代器模式将集合遍历逻辑分离为独立迭代器,实现遍历与存储解耦。支持统一接口遍历不同集合,隐藏内部结构,符合单一职责原则,广泛应用于Java集合框架。
构建AI智能体:六、体验Trae指定Qwen-Turbo模型自动生成问答系统
本文介绍如何使用字节跳动的AI编程工具Trae与阿里通义千问Qwen-Turbo模型,快速生成一个智能问答系统。通过图文结合方式,演示从环境搭建、指令生成到界面优化的全过程,涵盖前后端代码自动生成、模型调用封装及交互优化技巧,展现AI辅助开发的高效与趣味,助力开发者提升生产力。
魔笔 AI Chat Builder:让 AI 对话秒变可交互界面
在 AI 应用高速发展的今天,开发者不仅要懂模型和接口,还要解决交互设计、功能集成、发布运维等“最后一公里”问题。 魔笔 AI Chat Builder 的使命,就是以 低门槛 + 高效率 帮助 开发者与非技术人员 在极短时间内构建、发布并运行专业 AI 应用,让 AI 真正快速落地业务。
Java 设计模式之工厂模式:对象创建的艺术(含 UML 图解)
本文详解Java工厂模式三大形态:简单工厂、工厂方法与抽象工厂,结合UML图解与代码实例,剖析其核心思想——“创建与使用分离”。通过计算器、日志系统、电子设备等案例,深入讲解各模式的实现原理、适用场景及优缺点,并对比选择策略。最后揭示工厂模式在JDK和主流框架中的实际应用,帮助开发者掌握对象创建的艺术,提升代码扩展性与可维护性。(238字)
Java 设计模式之中介者模式:解耦复杂交互的架构艺术(含 UML 图解)
中介者模式通过引入协调者解耦多个对象间的复杂交互,将网状依赖转化为星型结构。适用于聊天室、GUI事件系统等场景,提升可维护性与扩展性,但需防中介者过度膨胀。
构建AI智能体:五、Pandas常用函数介绍,CodeBuddy智能化处理Excel数据实例
Pandas是Python核心数据分析库,提供Series、DataFrame等灵活数据结构,支持高效的数据读写、清洗、筛选、合并与统计操作,广泛应用于数据处理与分析场景。