iOS MachineLearning 系列(17)—— 几个常用的对象识别 CoreML 模型
上一篇文章中,我们介绍了几个官方的图片分类的模型,图片分类模型的应用场景在于将图片中最主要的事物进行识别,在已有的词库中找到最可能得事物。而对象识别则要更高级一些。再之前的文章,我们介绍过可以使用官方提供的API来进行矩形识别,文本识别,二维码识别以及人脸识别等,这类识别功能的特点是我们不仅可以将图片中的物体位置和尺寸分析出来,还可以对其进行类别的分类。
Tansformer | 详细解读:如何在CNN模型中插入Transformer后速度不变精度剧增?(二)
Tansformer | 详细解读:如何在CNN模型中插入Transformer后速度不变精度剧增?(二)
Tansformer | 详细解读:如何在CNN模型中插入Transformer后速度不变精度剧增?(一)
Tansformer | 详细解读:如何在CNN模型中插入Transformer后速度不变精度剧增?(一)
达摩院智能对话技术升级-更人类,更温暖-通义对话大模型SPACE加持下的新一代对话智能-SPACE:打造分布式对话智能
达摩院智能对话技术升级-更人类,更温暖-通义对话大模型SPACE加持下的新一代对话智能-SPACE:打造分布式对话智能
达摩院智能对话技术升级-更人类,更温暖-通义对话大模型SPACE加持下的新一代对话智能-SPACE-T:从客服迈向智能BI
达摩院智能对话技术升级-更人类,更温暖-通义对话大模型SPACE加持下的新一代对话智能-
达摩院智能对话技术升级-更人类,更温暖-通义对话大模型SPACE加持下的新一代对话智能-SPACE-D:可信赖的文档对话
达摩院智能对话技术升级-更人类,更温暖-通义对话大模型SPACE加持下的新一代对话智能-
即插即用 | 卷积与Self-Attention完美融合X-volution插入CV模型将带来全任务的涨点(文末附论文)(二)
即插即用 | 卷积与Self-Attention完美融合X-volution插入CV模型将带来全任务的涨点(文末附论文)(二)
即插即用 | 卷积与Self-Attention完美融合X-volution插入CV模型将带来全任务的涨点(文末附论文)(一)
即插即用 | 卷积与Self-Attention完美融合X-volution插入CV模型将带来全任务的涨点(文末附论文)(一)
一文读懂“大语言模型”
本文基于谷歌云的官方视频:[《Introduction to Large Language Models》](https://www.youtube.com/watch?v=zizonToFXDs&t=525s&ab_channel=GoogleCloudTech) ,整理而成,希望对大家入门大语言模型有帮助。
最强检测 | YOLO V4?都是弟弟! CenterNet2以56.4mAP超越当前所有检测模型(附源码与论文)(二)
最强检测 | YOLO V4?都是弟弟! CenterNet2以56.4mAP超越当前所有检测模型(附源码与论文)(二)
最强检测 | YOLO V4?都是弟弟! CenterNet2以56.4mAP超越当前所有检测模型(附源码与论文)(一)
最强检测 | YOLO V4?都是弟弟! CenterNet2以56.4mAP超越当前所有检测模型(附源码与论文)(一)
泛化神器 | 李沐老师新作进一步提升模型在多域多的泛化性,CV和NLP均有大幅度提升(文末获取论文)
泛化神器 | 李沐老师新作进一步提升模型在多域多的泛化性,CV和NLP均有大幅度提升(文末获取论文)
用LangChain构建大语言模型应用
LangChain 是一个开源 Python 库,任何可以编写代码的人都可以使用它来构建 LLM 支持的应用程序。 该包为许多基础模型提供了通用接口,支持提示管理,并在撰写本文时充当其他组件(如提示模板、其他 LLM、外部数据和其他工具)的中央接口。
BloombergGPT: 首个金融垂直领域大语言模型
NLP 在金融技术领域的应用广泛且复杂,主要应用场景包括情感分析、命名实体识别到问答等。大语言模型 (LLM) 已被证明可以有效处理上述任务;但是,鲜少没有报道过有专门针对金融领域的文献。本作中,我们展示了 BloombergGPT 这个拥有 500 亿参数的语言模型,它采用大量金融数据训练而来。我们基于 Bloomberg 大量的数据源构建了一个 3630 亿个token数据集,这可能是迄今为止最大的特定领域数据集,并增加了来自通用数据集的 3450 亿个token。
利用GPT-3 Fine-tunes训练专属语言模型
ChatGPT强大的自然语言理解力和表达力,目前只表现在通用领域。一旦进入专业领域,ChatGPT经常“一本正经,胡说八道”。此时用特定领域的知识对模型进行微调是时间成本和经济成本最高的解决方案。
ChatGPT模型中的惩罚机制
ChatGPT中,除了采样,还有惩罚机制也能控制文本生成的多样性和创意性。本文将详细为大家讲解ChatGPT种的两种惩罚机制,以及对应的`frequency_penalty `和`presence_penalty `参数。
ChatGPT模型采样算法详解
采样算法对ChatGPT的文本生成质量至关重要。本文重点讲解ChatGPT中temperature和top_p的采样原理,以及它们对模型输出的影响。帮助大家生成更灵活生动的内容。
EeSen、FSMN、CLDNN、BERT、Transformer-XL…你都掌握了吗?一文总结语音识别必备经典模型(3)
EeSen、FSMN、CLDNN、BERT、Transformer-XL…你都掌握了吗?一文总结语音识别必备经典模型
EeSen、FSMN、CLDNN、BERT、Transformer-XL…你都掌握了吗?一文总结语音识别必备经典模型(2)
EeSen、FSMN、CLDNN、BERT、Transformer-XL…你都掌握了吗?一文总结语音识别必备经典模型
EeSen、FSMN、CLDNN、BERT、Transformer-XL…你都掌握了吗?一文总结语音识别必备经典模型(1)
EeSen、FSMN、CLDNN、BERT、Transformer-XL…你都掌握了吗?一文总结语音识别必备经典模型
语言模型自己学会用搜索引擎了?Meta AI提出API调用自监督学习方法Toolformer
语言模型自己学会用搜索引擎了?Meta AI提出API调用自监督学习方法Toolformer
Attention-lvcsr、Residual LSTM…你都掌握了吗?一文总结语音识别必备经典模型(3)
Attention-lvcsr、Residual LSTM…你都掌握了吗?一文总结语音识别必备经典模型
Attention-lvcsr、Residual LSTM…你都掌握了吗?一文总结语音识别必备经典模型(2)
Attention-lvcsr、Residual LSTM…你都掌握了吗?一文总结语音识别必备经典模型
Attention-lvcsr、Residual LSTM…你都掌握了吗?一文总结语音识别必备经典模型(1)
Attention-lvcsr、Residual LSTM…你都掌握了吗?一文总结语音识别必备经典模型
NNLM、RNNLM、LSTM-RNNLM、Bi-lstm、GPT-1…你都掌握了吗?一文总结语音识别必备经典模型(2)
NNLM、RNNLM、LSTM-RNNLM、Bi-lstm、GPT-1…你都掌握了吗?一文总结语音识别必备经典模型
NNLM、RNNLM、LSTM-RNNLM、Bi-lstm、GPT-1…你都掌握了吗?一文总结语音识别必备经典模型(2)
NNLM、RNNLM、LSTM-RNNLM、Bi-lstm、GPT-1…你都掌握了吗?一文总结语音识别必备经典模型(1)
NNLM、RNNLM、LSTM-RNNLM、Bi-lstm、GPT-1…你都掌握了吗?一文总结语音识别必备经典模型(1)
NNLM、RNNLM、LSTM-RNNLM、Bi-lstm、GPT-1…你都掌握了吗?一文总结语音识别必备经典模型(一)