调度

首页 标签 调度
# 调度 #
关注
29561内容
|
3小时前
|
【双层模型】考虑供需双侧的综合能源双层优化模型
该程序构建了一个综合能源系统的优化调度双层模型,采用差分进化算法和规划算法分别求解上下层问题。模型涵盖了燃气轮机、锅炉、风电、光伏及储能设备的协同运行,并考虑了供应商与用户的利益平衡。通过满足设备出力、储能、负荷平衡等约束条件,实现了系统经济性和性能的优化。程序基于Matlab+Cplex编写,注释详尽且附带文档说明,便于学习研究。
从外到内:阿里云弹性与资源交付效率的全景透视
本文介绍了弹性服务的概念及其在云计算中的重要性。弹性服务通过动态调整云资源,帮助用户应对流量波动,降低成本并提高自动化水平。文中详细探讨了如何从“使用弹性”迈向“善用弹性”,包括定时任务、报警任务和目标追踪等伸缩模式的应用。同时,文章还介绍了阿里云在ECS弹性能力方面的建设成果,如每分钟交付万台实例的能力,并分享了汇量科技和Auto MQ两个客户案例的成功实践。最后,展望了未来在弹性计算领域的技术创新和发展方向,强调了持续优化和提升弹性能力的重要性。
PAI训练服务:云上大模型训练新篇章
本文介绍了通用AI时代下的新训练方法及PAI平台的优化。随着大模型时代的到来,算力需求激增,硬件和网络通信成为瓶颈。PAI平台通过自动容错、3D健康检测等技术确保训练稳定性;通过资源配额、智能调度等提高性价比;并推出PAI-TorchAcc和PAI-ChatLearn两大引擎,分别实现高效训练加速和灵活的对齐训练,显著提升训练性能与效果。这些改进解决了大规模AI训练中的关键问题,提升了效率和稳定性。
AI推理新纪元,PAI全球化模型推理服务的创新与实践
本次分享主题为“AI推理新纪元,PAI全球化模型推理服务的创新与实践”,由阿里云高级产品经理李林杨主讲。内容涵盖生成式AI时代推理服务的变化与挑战、play IM核心引擎的优势及ES专属网关的应用。通过LM智能路由、多模态异步生成等技术,PAI平台实现了30%以上的成本降低和显著性能提升,确保全球客户的业务稳定运行并支持异地容灾,目前已覆盖16个地域,拥有10万张显卡的推理集群。
合同与订单管理:CRM自动化的商业价值
在快节奏的商业环境中,CRM系统已成为企业提升效率、优化客户体验和增强竞争力的关键工具。本文探讨CRM自动化管理在合同签署和订单处理中的作用与优势。通过电子签名集成、合同模板管理、审批流程自动化和合同状态跟踪,CRM系统显著提高了合同签署的效率和准确性。订单处理方面,自动化的订单创建与同步、库存管理和调度、发货和物流跟踪以及发票和付款处理,确保了订单信息的准确性和及时性。CRM自动化不仅提升了运营效率,减少了人为错误,还增强了客户体验和数据安全性,成为企业数字化转型的重要推动力。
PAI企业级能力升级:应用系统构建、高效资源管理、AI治理
PAI平台针对企业用户在AI应用中的复杂需求,提供了全面的企业级能力。涵盖权限管理、资源分配、任务调度与资产管理等模块,确保高效利用AI资源。通过API和SDK支持定制化开发,满足不同企业的特殊需求。典型案例中,某顶尖高校基于PAI构建了融合AI与HPC的科研计算平台,实现了作业、运营及运维三大中心的高效管理,成功服务于校内外多个场景。
PAI年度发布:GenAI时代AI基础设施的演进
本文介绍了AI平台在大语言模型时代的新能力和发展趋势。面对推理请求异构化、持续训练需求及安全可信挑战,平台推出了一系列优化措施,包括LLM智能路由、多模态内容生成服务、serverless部署模式等,以提高资源利用效率和降低使用门槛。同时,发布了训推一体调度引擎、竞价任务等功能,助力企业更灵活地进行训练与推理任务管理。此外,PAI开发平台提供了丰富的工具链和最佳实践,支持从数据处理到模型部署的全流程开发,确保企业和开发者能高效、安全地构建AI应用,享受AI带来的红利。
|
1天前
|
Java 日期与时间处理:精准掌控时间流转
Java 8引入了全新的日期和时间API,解决了旧版`java.util.Date`和`Calendar`类设计不佳、操作繁琐的问题。新API包括`LocalDate`、`LocalTime`和`LocalDateTime`类,操作简洁直观,符合日常思维习惯。同时提供了`Period`和`Duration`处理时间间隔,以及`DateTimeFormatter`进行格式化输出。这些改进使开发者能更高效、准确地处理日期和时间,极大提升了开发效率与代码质量。 (239字符)
如何让DataWorks调度依赖一个非DataWorks的任务结点,如数据上传任务?
如何让DataWorks调度依赖一个非DataWorks的任务结点,如数据上传任务?创建一个表的空分区,然后通过DataWorks去检查这个分区。
面向高效大模型推理的软硬协同加速技术 多元化 AI 硬件引入评测体系
本文介绍了AI硬件评测体系的三大核心方面:统一评测标准、平台化与工具化、多维度数据消费链路。通过标准化评测流程,涵盖硬件性能、模型推理和训练性能,确保评测结果客观透明。平台化实现资源管理与任务调度,支持大规模周期性评测;工具化则应对紧急场景,快速适配并生成报告。最后,多维度数据消费链路将评测数据结构化保存,服务于综合通用、特定业务及专业性能分析等场景,帮助用户更好地理解和使用AI硬件。
免费试用