SpringBoot整合Redis、ApacheSolr和SpringSession
本文介绍了如何使用SpringBoot整合Redis、ApacheSolr和SpringSession。SpringBoot以其便捷的配置方式受到开发者青睐,通过引入对应的starter依赖,可轻松实现功能整合。对于Redis,可通过配置RedisSentinel实现高可用;SpringSession则提供集群Session管理,支持多种存储方式如Redis;整合ApacheSolr时,借助Zookeeper搭建SolrCloud提高可用性。文中详细说明了各组件的配置步骤与代码示例,方便开发者快速上手。
微服务——SpringBoot使用归纳——Spring Boot 中集成Redis——Spring Boot 集成 Redis
本文介绍了在Spring Boot中集成Redis的方法,包括依赖导入、Redis配置及常用API的使用。通过导入`spring-boot-starter-data-redis`依赖和配置`application.yml`文件,可轻松实现Redis集成。文中详细讲解了StringRedisTemplate的使用,适用于字符串操作,并结合FastJSON将实体类转换为JSON存储。还展示了Redis的string、hash和list类型的操作示例。最后总结了Redis在缓存和高并发场景中的应用价值,并提供课程源代码下载链接。
微服务——SpringBoot使用归纳——Spring Boot 中集成Redis——Redis 介绍
本文介绍在 Spring Boot 中集成 Redis 的方法。Redis 是一种支持多种数据结构的非关系型数据库(NoSQL),具备高并发、高性能和灵活扩展的特点,适用于缓存、实时数据分析等场景。其数据以键值对形式存储,支持字符串、哈希、列表、集合等类型。通过将 Redis 与 Mysql 集群结合使用,可实现数据同步,提升系统稳定性。例如,在网站架构中优先从 Redis 获取数据,故障时回退至 Mysql,确保服务不中断。
WordPress数据库查询缓存插件
这款插件通过将MySQL查询结果缓存至文件、Redis或Memcached,加速页面加载。它专为未登录用户优化,支持跨页面缓存,不影响其他功能,且可与其他缓存插件兼容。相比传统页面缓存,它仅缓存数据库查询结果,保留动态功能如阅读量更新。提供三种缓存方式选择,有效提升网站性能。
WordPress果果加速插件
这是一款用于加速网站访问的缓存插件,支持将页面内容缓存到文件、Redis或Memcached中。通过首次访问生成缓存,后续直接读取缓存内容,显著提升访问速度。插件功能丰富,包括设置缓存有效期、筛选GET/COOKIE参数、gzip压缩等。但不适合天气、论坛、股票等需实时更新数据的网站使用。产品提供友好配置界面与错误提示,优化缓存逻辑,增强性能表现。
Redis--缓存击穿、缓存穿透、缓存雪崩
缓存击穿、缓存穿透和缓存雪崩是Redis使用过程中可能遇到的常见问题。理解这些问题的成因并采取相应的解决措施,可以有效提升系统的稳定性和性能。在实际应用中,应根据具体场景,选择合适的解决方案,并持续监控和优化缓存策略,以应对不断变化的业务需求。
Redis分布式锁如何实现 ?
Redis分布式锁主要依靠一个SETNX指令实现的 , 这条命令的含义就是“SET if Not Exists”,即不存在的时候才会设置值。
只有在key不存在的情况下,将键key的值设置为value。如果key已经存在,则SETNX命令不做任何操作。
这个命令的返回值如下。
● 命令在设置成功时返回1。
● 命令在设置失败时返回0。
假设此时有线程A和线程B同时访问临界区代码,假设线程A首先执行了SETNX命令,并返回结果1,继续向下执行。而此时线程B再次执行SETNX命令时,返回的结果为0,则线程B不能继续向下执行。只有当线程A执行DELETE命令将设置的锁状态删除时,线程B才会成功执行S
Redis分片集群中数据是怎么存储和读取的 ?
Redis集群采用的算法是哈希槽分区算法。Redis集群中有16384个哈希槽(槽的范围是 0 -16383,哈希槽),将不同的哈希槽分布在不同的Redis节点上面进行管理,也就是说每个Redis节点只负责一部分的哈希槽。在对数据进行操作的时候,集群会对使用CRC16算法对key进行计算并对16384取模(slot = CRC16(key)%16383),得到的结果就是 Key-Value 所放入的槽,通过这个值,去找到对应的槽所对应的Redis节点,然后直接到这个对应的节点上进行存取操作
Redis和Mysql如何保证数据⼀致?
1. 先更新Mysql,再更新Redis,如果更新Redis失败,可能仍然不⼀致
2. 先删除Redis缓存数据,再更新Mysql,再次查询的时候在将数据添加到缓存中
这种⽅案能解决1 ⽅案的问题,但是在⾼并发下性能较低,⽽且仍然会出现数据不⼀致的问题,⽐如线程1删除了 Redis缓存数据,正在更新Mysql,此时另外⼀个查询再查询,那么就会把Mysql中⽼数据⼜查到 Redis中
1. 使用MQ异步同步, 保证数据的最终一致性
我们项目中会根据业务情况 , 使用不同的方案来解决Redis和Mysql的一致性问题 :
1. 对于一些一致性要求不高的场景 , 不做处理例如 : 用户行为数据 ,