MiTS与PoTS:面向连续值时间序列的极简Transformer架构
本文探讨了将标准Transformer架构应用于连续值时间序列数据的最小化调整方案,提出了极简时间序列Transformer(MiTS-Transformer)和位置编码扩展时间序列Transformer(PoTS-Transformer)。通过替换嵌入层为线性映射层,MiTS-Transformer实现了对正弦波序列的有效学习。而PoTS-Transformer则通过在高维空间中进行位置编码,结合低维模型架构,解决了长序列处理与过拟合问题。实验结果表明,这两种模型在不同类型的时间序列预测任务中表现出色,为基于Transformer的时间序列预测提供了高效基准方案。
PyTorch PINN实战:用深度学习求解微分方程
物理信息神经网络(PINN)是一种将深度学习与物理定律结合的创新方法,特别适用于微分方程求解。传统神经网络依赖大规模标记数据,而PINN通过将微分方程约束嵌入损失函数,显著提高数据效率。它能在流体动力学、量子力学等领域实现高效建模,弥补了传统数值方法在高维复杂问题上的不足。尽管计算成本较高且对超参数敏感,PINN仍展现出强大的泛化能力和鲁棒性,为科学计算提供了新路径。文章详细介绍了PINN的工作原理、技术优势及局限性,并通过Python代码演示了其在微分方程求解中的应用,验证了其与解析解的高度一致性。
《鸿蒙AI开发:第三方库管理与更新全攻略》
在鸿蒙系统人工智能应用开发中,第三方库的管理与更新至关重要。首先需根据项目需求精准选择适配的库,如OpenCV、TensorFlow Lite等,并关注兼容性与社区支持。引入库时可借助ohpm工具,通过指令或配置文件实现便捷管理。版本管理要求明确指定依赖版本,定期更新并充分测试以确保稳定性。更新过程中需谨慎操作,解决依赖冲突,保障应用功能正常运行。整个流程从选择到更新环环相扣,助力开发者构建高效稳定的AI应用。
《探索AI与鸿蒙融合的开源宝藏:这些框架你不能错过》
人工智能(AI)与鸿蒙系统的集成开发正引领技术创新潮流,为用户带来更智能、流畅的体验。华为HiAI作为鸿蒙AI生态的核心引擎,提供计算机视觉、语音识别等多领域支持,实现设备间协同共享;TensorFlow Lite for Microcontrollers专为资源受限的物联网设备优化,助力轻量级AI模型运行;MindSpore Lite适合移动和边缘设备,具备高效推理性能;OpenCV for HarmonyOS则在计算机视觉领域大放异彩,赋能图像处理和视频分析。这些开源框架各具优势,为开发者提供了强大工具,推动AI与鸿蒙生态繁荣发展。
使用Python和DeepSeek进行联网搜索的实践指南
本文介绍如何使用Python和假设的高性能深度学习工具包DeepSeek进行联网搜索,并通过实际案例展示其应用过程。首先,准备环境并安装依赖库(如Python 3.x、pip、DeepSeek、requests和BeautifulSoup4)。接着,讲解了DeepSeek的功能及其在图像分类、实体识别等任务中的应用。通过联网搜索抓取数据并进行预处理后,使用TensorFlow和Keras构建和训练CNN模型。
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
害虫识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了12种常见的害虫种类数据集【"蚂蚁(ants)", "蜜蜂(bees)", "甲虫(beetle)", "毛虫(catterpillar)", "蚯蚓(earthworms)", "蜚蠊(earwig)", "蚱蜢(grasshopper)", "飞蛾(moth)", "鼻涕虫(slug)", "蜗牛(snail)", "黄蜂(wasp)", "象鼻虫(weevil)"】
再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Djan