视觉智能开放平台

首页 标签 视觉智能开放平台
FFmpeg开发笔记(一)搭建Linux系统的开发环境
本文指导初学者如何在Linux上搭建FFmpeg开发环境。首先,由于FFmpeg依赖第三方库,可以免去编译源码的复杂过程,直接安装预编译的FFmpeg动态库。推荐网站<https://github.com/BtbN/FFmpeg-Builds/releases>提供适用于不同系统的FFmpeg包。但在安装前,需确保系统有不低于2.22版本的glibc库。详细步骤包括下载glibc-2.23源码,配置、编译和安装。接着,下载Linux版FFmpeg安装包,解压至/usr/local/ffmpeg,并设置环境变量。最后编写和编译简单的C或C++测试程序验证FFmpeg环境是否正确配置。
阿里云视觉智能开放平台使用简明教程
阿里云视觉智能开放平台是基于阿里巴巴视觉智能技术实践经验,面向视觉智能技术企业和开发商(含开发者),为其提供高易用、普惠的视觉API服务,帮助企业快速建立视觉智能技术应用能力的综合性视觉AI能力平台。首期公测阶段平台将主要开放人脸人体、文字识别、商品理解、内容安全、图像识别、图像增强、图像分割、目标检测8个类目等多个API能力供您使用。
AI人像特效之「一键生成N次元虚拟形象」
为了零成本低门槛地提供极致酷炫的人像玩法,我们提出了一套人像风格化通用框架「AI Maleonn」AI 版神笔马良,用于一键生成风格百变的人物虚拟形象,在风格上涵盖手绘、3D、日漫、艺术特效、铅笔画等多种风格,同时可以支持面向小样本的专属风格定制,利用少量目标风格图即可实现快速迁移拓展;在处理维度上,不仅适用于生成头部效果,更支持全图精细化纹理转换,兼容多人场景;在模型鲁棒性上,有效克服了多角度姿态、面部遮挡等各类复杂场景,整体稳定性大大提升。
【阿里云OpenVI-人脸感知理解系列之人脸识别】基于Transformer的人脸识别新框架TransFace ICCV-2023论文深入解读
本文介绍 阿里云开放视觉智能团队 被计算机视觉顶级国际会议ICCV 2023接收的论文 &quot;TransFace: Calibrating Transformer Training for Face Recognition from a Data-Centric Perspective&quot;。TransFace旨在探索ViT在人脸识别任务上表现不佳的原因,并从data-centric的角度去提升ViT在人脸识别任务上的性能。
免费试用