OPENCV图像处理提高(一)图像增强
在图像处理学习中会涉及到直方图,直方图很好地表现了图像的灰度信息;同时我们注意到在暗图像中,直方图的分量集中在灰度级的低端;亮图像的灰度值集中在直方图灰度值的高端;低对比度的图像有较窄的直方图,并集中于直方图的中间部分;高对比度的图像中直方图的分量覆盖很宽的范围,而且像素的分布没有太不均匀,只能看到少量垂线比其他高许多。通过图像增强可以有效地减弱这些缺陷
图像文字识别(OCR)用什么算法小结
说明:主要考虑深度学习的方法,传统的方法不在考虑范围之内。
1.文字识别步骤
1.1detection:找到有文字的区域(proposal)。
1.2classification:识别区域中的文字。
2.文字检测
文字检测主要有两条线,两步法和一步法。
吴恩达《机器学习》课程总结(18)应用实例:图片文字识别
18.1问题描述和流程图
(1)图像文字识别是从给定的一张图片中识别文字。
(2)流程包括:
1.文字侦测
2.字符切分(现在不需要切分了)
3.字符分类
18.2滑动窗口
在行人检测中,滑动窗口是首先训练一个固定尺寸输入的判断是否有行人的网络,然后在一张图片中裁该尺寸的图片,送入到网络中;然后不断移动裁剪区,重复以上过程,知道裁剪到最后,这时按比例放大裁剪区,然后将裁剪到的图片缩放到网络的输入,如此循环。