大模型服务平台百炼

首页 标签 大模型服务平台百炼
# 大模型服务平台百炼 #
关注
1522内容
|
1天前
| |
高级RAG优化手册:3招解决检索不准和查询模糊
本文深入解析RAG(检索增强生成)技术的核心优化方法,涵盖背景、架构与实践。RAG通过整合外部知识库,弥补大语言模型在实时性、准确性和专业性上的不足,广泛应用于企业场景。文章系统讲解RAG如何解决知识静态、生成幻觉与专业深度不足等问题,并剖析其离线索引与在线生成的闭环流程。此外,还介绍了高级优化策略,如查询重写、混合检索与结果重排序,助力突破RAG应用瓶颈。
通义千问API:让大模型写代码和跑代码
基于前面三章的铺垫,本章我们将展示大模型Agent的强大能力。我们不仅要实现让大模型同时使用多种查询工具,还要实现让大模型能查询天气情况,最后让大模型自己写代码来查询天气情况。
一文掌握大模型提示词技巧:从战略到战术
本文将用通俗易懂的语言,带你从战略(宏观)和战术(微观)两个层次掌握大模型提示词的常见技巧,真正做到理论和实践相结合,占领 AI 运用的先机。
精铸智刃·“百炼”成钢——深度探索阿里云百炼大模型开发平台
阿里云百炼平台是一个一站式的大型语言模型开发和应用平台,旨在帮助企业与开发者高效构建和部署定制化的大模型。平台集成了通义大模型、行业模型和第三方模型,提供模型微调、模型调优、模型部署、模型评测等工具链。用户可以轻松创建和管理模型,通过模型广场选择合适的模型,进行模型体验和调优,然后部署模型以供应用调用。
|
5月前
| |
来自: 云原生
从零开始开发 MCP Server
本文介绍如何使用Serverless Devs CLI工具从零开发并一键部署MCP Server到阿里云函数计算(FC)。首先通过初始化MCP Server项目,完成本地代码编写,利用Node.js实现一个简单的Hello World工具。接着对代码进行打包,并通过Serverless Devs工具将项目部署至云端。部署完成后,提供三种客户端接入方式:官方Client、其他本地Client及在FC上部署的Client。最后可通过内置大模型的inspector测试部署效果。Serverless Devs简化了开发流程,提升了MCP Server的构建效率。
|
4月前
| |
阿里云百炼产品月刊【2025年4月】
本月刊主要介绍了阿里云百炼平台4月最新更新内容,包括模型服务和产品功能两大部分。在模型服务方面,发布了全新的混合推理模型Qwen3系列,支持思考与非思考模式,性能达到业界顶尖水平;新增了图生视频、语音合成及视觉理解等多款模型,大幅提升多媒体处理能力。产品功能上,新增MCP市场与管理功能,允许用户开通或自定义MCP服务,并在应用中引用以增强能力。此外,部分历史快照模型将于5月8日下线,已实施限流措施。
你的AI系统该如何"组队"?多智能体架构选择指南
想知道AI代理如何组队变得更强大?本文深入解析多智能体系统的核心概念、常见架构和通信模式,帮你轻松理解如何构建更复杂、更高效的AI系统。告别单一代理的局限,迎接AI协作的新时代!
|
30天前
| |
RAG分块技术全景图:5大策略解剖与千万级生产环境验证
本文深入解析RAG系统中的五大文本分块策略,包括固定尺寸、语义、递归、结构和LLM分块,探讨其工程实现与优化方案,帮助提升知识检索精度与LLM生成效果。
|
15天前
| |
​​混合检索技术:如何提升AI智能体50%的响应效率?​
本文深入解析检索增强智能体技术,探讨其三大集成模式(工具模式、预检索模式与混合模式),结合实战代码讲解RAG组件链构建、上下文压缩、混合检索等关键技术,并提供多步检索工作流与知识库自更新机制设计,助力高效智能体系统开发。
免费试用