构建AI智能体:五十六、从链到图:LangGraph解析--构建智能AI工作流的艺术工具
本文介绍了LangGraph这一基于LangChain的库,它突破了传统线性链式开发的局限,通过图计算模型实现复杂AI应用的构建。LangGraph的核心优势在于:1)支持动态图结构,实现循环和条件路由;2)内置状态管理,维护应用数据流;3)天然支持多智能体协作。与传统开发方式相比,LangGraph通过节点、边和状态的抽象,提供了更清晰的业务逻辑表达、更健壮的错误处理、更好的可观测性,以及更便捷的团队协作和功能扩展能力。
智能体 | 快速构建专属英语口语陪练助手,这下雅思再也不用愁了
智能体是以云为基础、AI为核心的智能系统,不同于通义千问等AI工具,用户可自建专注于特定领域的智能体,如英语口语陪练助手。通过阿里云百炼平台,开通服务、创建智能体、选择模型、设计Prompt并测试优化,最终发布到多渠道。用户能随时随地进行英语口语练习,提升语言能力。
阿里云百炼工作流支持多模型协同标注,三模型投票分类用户意图实战
本文介绍了一种基于多模型协作的高效分类工作流方案,用于解决传统标注工作中人力依赖大、易出错的问题。通过通义千问系列的 Qwen-Plus、Qwen-Max 和 Qwen3-30b-a3b 三大模型,结合投票机制,实现售前售后意图识别的精准分类。文中详细讲解了如何在阿里云百炼应用广场创建任务型工作流,包括模型节点配置、条件判断设置及测试发布全流程。此外,还提供了批量打标的 Java 示例代码,适用于更复杂的意图标注场景。跟随文章步骤,即可快速构建高效率、高准确性的分类系统。
魔笔 AI Chat Builder:让 AI 对话秒变可交互界面
在 AI 应用高速发展的今天,开发者不仅要懂模型和接口,还要解决交互设计、功能集成、发布运维等“最后一公里”问题。
魔笔 AI Chat Builder 的使命,就是以 低门槛 + 高效率 帮助 开发者与非技术人员 在极短时间内构建、发布并运行专业 AI 应用,让 AI 真正快速落地业务。
构建AI智能体:一、初识AI大模型与API调用
本文介绍大模型基础知识及API调用方法,涵盖阿里云百炼平台密钥申请、DashScope SDK使用、Python调用示例(如文本情感分析、图像文字识别),助力开发者快速上手大模型应用开发。
【MCP教程系列】如何自己打包MCP服务并部署到阿里云百炼上
本文章以阿里云百炼的工作流为例,介绍如何将其封装为MCP服务并部署到平台。主要步骤包括:1)使用Node.js和TypeScript搭建MCP服务;2)将项目打包并发布至npm官方平台;3)在阿里云百炼平台创建自定义MCP服务;4)将服务添加到智能体中进行测试。通过这些步骤,您可以轻松实现工作流的MCP化,并在智能体中调用自定义服务。