Apache Flink 漫谈系列(04) - State
实际问题
在流计算场景中,数据会源源不断的流入Apache Flink系统,每条数据进入Apache Flink系统都会触发计算。如果我们想进行一个Count聚合计算,那么每次触发计算是将历史上所有流入的数据重新新计算一次,还是每次计算都是在上一次计算结果之上进行增量计算呢?答案是肯定的,Apache Flink是基于上一次的计算结果进行增量计算的。
阿里巴巴大数据技术关键进展及展望
2019杭州云栖大会大数据技术专场,由阿里云通用计算平台负责人关涛带来以 “阿里巴巴大数据技术关键进展及展望” 为主题的演讲。本文首先讲解了从阿里巴巴的角度看待大数据领域的客户价值迁移,概览了核心技术的发展点,最后针对如何构建智能化大数据平台的相关工作进行了介绍,从引擎优化到 “自动驾驶”,并列举了几个典型案例。
Flink最佳实践(二)Flink流式计算系统
前言
在 Flink最佳实践(一)流式计算系统概述 中,我们详细讨论了流式计算系统中 时域、窗口、时间推理与正确性工具 等概念。
本文将以这些概念为基础,逐一介绍 Flink 的 发展背景、核心概念、时间推理与正确性工具、安装部署、客户端操作、编程API 等内容,让开发人员对 Flink 有较为全面的认识并拥有一些基础操作与编程能力。
Flink SQL 功能解密系列 —— 数据去重的技巧和思考
去重逻辑在业务处理中使用广泛,大致可以分两类:DISTINCT去重和FIRST_VALUE主键去重,两者的区别是DISTINCT去重是对整行数据进行去重,比如tt里面数据可能会有重复,我们要去掉重复的数据;FIRST_VALUE是根据主键进行去重,可以看成是一种业务层面的去重,但是真实的业务场景使用也很普遍,比如一个用户有多次点击,业务上只需要取第一条。
使用 Kafka 和 Flink 构建实时数据处理系统
引言
在很多领域,如股市走向分析, 气象数据测控,网站用户行为分析等,由于数据产生快,实时性强,数据量大,所以很难统一采集并入库存储后再做处理,这便导致传统的数据处理架构不能满足需要。流计算的出现,就是为了更好地解决这类数据在处理过程中遇到的问题。
阿里巴巴飞天大数据架构体系与Hadoop生态系统
先说Hadoop
什么是Hadoop?
Hadoop是一个开源、高可靠、可扩展的分布式大数据计算框架系统,主要用来解决海量数据的存储、分析、分布式资源调度等。Hadoop最大的优点就是能够提供并行计算,充分利用集群的威力进行高速运算和存储。